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Abstract

We develop a financial market trading model in the tradition of Glosten

and Milgrom (1985) that allows us to incorporate non-trivial volume. We

observe that in this model price volatility is positively related to the trading

volume and to the absolute value of the net order flow, i.e. the order imbalance.

Moreover, higher volume leads to higher order imbalances. These findings are

consistent with well-established empirical findings. Our model further predicts

that higher trader participation and systematic improvements in the quality

of traders’ information lead to higher volume, larger order imbalances, lower

market depth, shorter duration, and higher price volatility.
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I Introduction

An important empirical regularity is that price volatility is positively related to trading

volume and to the order imbalance (i.e. the absolute difference between the volumes of

buy and sell orders); see Chordia, Roll, and Subrahmanyam (2002) for a comprehensive

list of references or Karpoff (1987) for earlier studies. Volume is generated by trading

activity, which is commonly explained by diversification and hedging motives, liquidity

needs, or asymmetric information. Order imbalances occur either by chance or because

of diverging opinions, which are often the result of heterogenous information.

Focussing on the information motive, we develop a model to study the impact of non-

trivial volume on prices. A key feature of our model is the parsimonious formulation

of traders’ information. It allows us to study how changes in the underlying information

environment influence market activity. The economic questions that can then be addressed

range from the impact of regulatory changes, such as regulation Fair Disclosure, to the

effect of improvements in data processing technology. For instance, do such changes

increase or decrease price volatility and do they lead to more or less trading?

Our model combines features of Glosten and Milgrom (1985) and Kyle (1985) and has

the following structure. Liquidity is supplied by an uniformed, risk-neutral and competi-

tive market maker (or dealer). Demanders of liquidity either trade for reasons outside the

model (e.g., to rebalance their portfolio or inventory), or they have private information

about the fundamental value of the security. Specifically, informed traders receive private

binary signals of heterogenous precisions, or qualities. There is a continuum of possible

qualities, and the quality of trader i’s signal is i’s private information. Traders first post

market orders. The dealer observes the order flow, sets a price that aggregates the infor-

mation contained in it, and takes positions to clear the market if there is an imbalance

between buys and sales. In equilibrium, the price is set so that traders buy (sell) if their

private signal is sufficiently encouraging (discouraging).

As in Kyle (1985) or Admati and Pfleiderer (1988), traders post their orders simulta-

neously, which allows us to analyze the behavior of volume and order imbalances. As in

Glosten and Milgrom (1985) traders are restricted to post orders of unit size. Combining

unit trades with the continuous information structure allows us to concisely characterize

the equilibrium by the marginal buyer’s and seller’s signal qualities.

Further, our setup allows for random variations in the number of traders and het-

erogeneity in people’s ability to process information, which are essential characteristics

of changes in market access or disclosure requirements. Tractably capturing these as-

pects within existing frameworks, such as Kyle (1985) or Admati and Pfleiderer (1988), is

challenging, because the linear structure of the equilibrium in these models relies on the
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common knowledge of the number of traders and their signal precisions.1

In the equilibrium of our model some informed traders choose not to trade because

their information is not sufficiently “reliable”. We can thus study and quantify the no-

transaction rate. This rate is loosely related to the time passage between transactions,

or duration, a measure of transaction costs that has recently gained attention in the

literature (see, for instance, Foucault, Kadan, and Kandel (2005)).

As a first step in our analysis, we verify that our model is consistent with the afore-

mentioned, common empirical findings on the relations among the observables, namely,

that price volatility is positively related to both, the trading volume and the order im-

balance. Investigating the behavior of the order flow, we find that a higher volume leads

to a higher order imbalance. These results lend credibility to our model, showing that it

can serve as a conceptual framework for understanding and predicting trader behavior in

a dealer market.

The intuition for this first set of results stems from the informational setup. In equi-

librium, actions are more likely to be “correct” because signals are informative. Thus the

more trades there are, the more “correct” rather than “wrong” decisions there are. This

raises the expected order imbalance and leads to a higher price volatility.

A further testable implication of our model is that an increase in the time t−1 net

order flow increases the expectation of the asset value, hence the expected time t number

of traders with favorable information and the expected time t net order flow. In other

words, in our model buys generate the expectation of more buys so that there is expected

momentum in behavior.

After establishing the core relations among major observable variables, we move on to

employ our framework to shed light on how structural shifts in markets affect the major

observable variables. We first explore the behavior of prices and volume as the arrival

rate of traders increases. Our model predicts that any event resulting in a higher aver-

age number of active traders, such as the advent of internet-based trading, will increase

volume, the order imbalance and price volatility, and it will lower duration.

Next, we investigate the implications of an improvement in the traders’ information

quality. Such an improvement can occur, for instance, when a company adopts or a

regulator imposes a new disclosure policy that fosters transparency.2 Our model predicts

that, ceteris paribus, stocks of companies with such new policies should exhibit higher

1As Kyle (1985) and Admati and Pfleiderer (1988) provide the foundation for a large strand of the
dealer market literature, we will comment in detail on the relation of our results to theirs in Sections IV
and V to highlight the marginal contribution of our work.

2Related to this are many examples of incremental or even dramatic improvements in economy-wide
information quality, such as the advent of new data sources or new computing tools that allow faster
processing of data. Our model then delivers testable predictions for event studies of such changes.
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volume, higher order imbalances, and higher price volatility.

The key feature that admits such a comparative analysis is our informational setup.

Focussing on families of quality distributions that are ordered in a first order stochastic

dominance sense, we identify a complementarity between the overall and the marginal

trader’s information: as the aggregate quality increases, traders require signals of higher

precision to be willing to trade. Intuitively, a first-order shift in information quality leads

to a larger fraction of informed traders who have high quality information. This implies

that prices are more informative and the relative disadvantage of the less well informed

traders is smaller. At the same time, however, a higher average quality increases adverse

selection costs and thus reduces “market depth”, so that the price is more sensitive to

each trade. A previously marginal trader now faces prices that, given his information,

react too strongly to orders and he thus abstains from trading.

At first sight, the impact on volume appears ambiguous: when the marginal buyer

has higher quality information, the fraction of people who trade may increase or decrease.

Imposing more structure on the quality distribution in the form of a tighter technical

monotonicity condition, we show that the probability of an informed trade increases as the

overall information quality improves. This effect also leads to an increase in the expected

trading volume. The expected order imbalance follows suit: a higher marginal trading

quality implies that a smaller fraction of traders take the “wrong” action. Consequently, a

larger fraction of traders will trade in the “right” direction, skewing the order imbalance.

Combining the effect of the larger price impact of each transaction with the increase

in trading volume, we find that price variability also increases. Finally, the mechanism

that causes improvements in information quality to increase volume will increase the

transaction rate and thus decrease duration.

Our framework admits an alternative way of modeling an improvement in information

quality in the market by increasing the probability that any given trader is privately

informed. Yet, we show that the equilibrium effects of such an increase are at odds with

empirical findings: a higher probability of a trader being uninformed leads to higher

volume but lower price volatility. Information structure shifts, on the other hand, do

yield the empirically observed relation (higher volume and higher price volatility) and

thus provide a better interpretation of empirical findings.

The remainder of the paper is organized as follows. Section II outlines our trading

model. Section III derives the trading equilibrium. Section IV discusses the evolution of

prices and the impact of volume on the order imbalance and price variability. Section V

discusses the comparative statics with respect to entry rates and information structures.

Section VI concludes. Most proofs are in the appendix.
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II The Basic Setup

A Overview of the Trading Process.

Liquidity is supplied by an uniformed, risk-neutral and competitive dealer. Liquidity de-

manders either have private information about the fundamental value of the security, or

they trade for reasons outside the model (e.g. portfolio or inventory rebalancing, diversi-

fication). Trade is restricted to unit lots of a single asset.

A random number of traders enter the market simultaneously. Informed traders try to

predict the transaction price after receiving their information, and thus determine whether

or not it is worthwhile to submit a market order. The dealer observes all orders and then

sets a price that reflects her information.3 All orders clear at a single price; the dealer

absorbs the net order flow (the number of buys minus sales) in such a manner that she

makes zero expected profits on her position.

Uncertain transaction prices are common in real markets, a few examples being:

(a) dealer markets, such as forex and bond-markets (until recently), where liquidity de-

mand precedes liquidity supply so that the clearing price is unknown at the time of the

order submission; (b) trades that clear on an upstairs market;4 (c) trades during the

opening session on stock markets; (d) very fast moving markets or markets where the

time from placing a market order to its execution is sufficiently long.5

B Model Details

Security: There is a single risky asset with a liquidation value V from a set of two

potential values V = {V , V } ≡ {0, 1}. The two values are equally likely, Pr(V ) = 1/2,

and this prior distribution over V is common knowledge.6

Traders: There is an infinitely large pool of traders, out of which a random num-

ber Nt ≥ 0 of people are drawn in period t according to a Poisson distribution with

parameter ν. Each trader can buy or sell one round lot (one unit) of the security at

prices determined by the dealer, or he can be inactive. As in Glosten and Milgrom

3In what follows we will refer to the dealer as female and to traders as male.
4There may be prior price indications, but the definitive transaction price is only pinned down when

the order is placed. Often large institutional traders instruct their trading department to acquire (or
sell) x shares “cheapest” (“highest”). The trading department approaches its floor broker or an upstairs
trader, who then helps work the order.

5Even with access to tick-to-tick data (for instance as offered by NASDAQ’s INET), a retail investor
faces a time gap between posting an order and trade execution. Another example is ordering in the
immediate aftermarket of an IPO when price uncertainty is large.

6As will be clear from the subsequent analysis, the assumption of an equal prior is without loss of
generality.
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(1985), each trader can trade at most once, immediately upon entering. Traders can post

only market orders. The set of possible actions is thus {buy, no trade, sell}.
Each trader is equipped with private information with probability µ ∈ (0, 1); if not

informed, a trader becomes a noise trader (probability 1 − µ). The informed traders are

risk neutral and rational, and they choose an action to maximize their expected trading

profits. Noise traders buy and sell with equal probability; to simplify the exposition, we

assume that they always trade. They are not necessarily irrational, but they trade for

reasons outside of this model, such as liquidity.7

Market and timing: There are t = 1, . . . , T time periods. At each t, Nt traders

enter the market and post their orders simultaneously to the dealer. The latter is risk

neutral and competitive; upon observing the order flow, she sets a zero-expected profit

market price.

C Information

The structure of the model is common knowledge among all market participants. The

identity of a trader and his signal are private information, but everyone can observe the

history of trades and transaction prices. “No-trades” by their very nature are unob-

servable, consequently neither is the total number of traders in the market. The public

information Ht at date t > 1 is the sequence of numbers of buys and sales together with the

realized transaction prices at all dates prior to t: Ht = ((b1, s1, p1), . . . , (bt−1, st−1, pt−1)),

where bτ , sτ and pτ are the numbers of buys and sales and the realized transaction price

respectively at date τ < t. H1 refers to the initial history before trades occurred. The

numbers of informed and noise traders at time t and qualities of informed traders’ infor-

mation are independent of the past history Ht and the underlying fundamental V .

Dealer. The dealer’s information at date t consists of the public history Ht, the

number of buy orders bt and the number of sell orders st posted at time t.

Informed Traders’ information. We follow most of the GM sequential trading

literature and assume that traders receive a binary signal about the true liquidation

value V . These signals are private, and they are independently distributed, conditional

on the true value V . Specifically, informed trader i is told “with chance qi, the liquidation

7Assuming the presence of noise traders is common practice in the literature on microstructure with
asymmetric information to prevent “no-trade” outcomes à la Milgrom-Stokey (1982).
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Figure 1: Signals, Signal Qualities and Noise Trading. This figure illustrates the
mechanics of our signal distribution: first, it is determined whether a trader is informed
(probability µ) or noise (probability 1 − µ). If informed, the signal quality is determined
next. The trader receives the “correct” signal with probability qi and the “wrong” signal
with probability 1− qi. (The draw of the state V is identical for all agents.) If the trader
is a noise trader, then he will buy or sell with equal probability.

value is High/Low (h/l)” where

Pr(signal|true value) V = 0 V = 1

signal = l qi 1 − qi

signal = h 1 − qi qi

This qi is the signal quality. In contrast to most of the GM literature, we assume that

there is a continuum of signal qualities and that qi is trader i’s private information. The

distribution of qualities is independent of the asset’s true value and can be understood as

reflecting, for instance, the distribution of traders’ talents to analyze securities. Figure 1

illustrates the distribution of noise and informed traders and the information structure.

In what follows, we will combine the binary signal (h or l) and its quality on [1/2,1] in a

single variable on [0,1], namely, the trader’s private belief that the asset’s liquidation value

6



2

1

f1

f0

1

1

F1

F0

Figure 2: Plots of Belief Densities and Distributions. Left Panel: The densities
of beliefs for an example with uniformly distributed qualities. The densities for beliefs
conditional on the true state being 1 and 0 respectively are f1(π) = 2π and f0(π) = 2(1−
π). Right Panel: The corresponding conditional distribution functions are F1(π) = π2

and F0(π) = 2π − π2.

is high (V = 1). This belief is the trader’s posterior on V = 1 after he learns his quality

and sees his private signal but before he observes the public history. A trader’s behavior

given his private signal and its quality can then be equivalently described in terms of the

trader’s private belief. This approach allows us to characterize the equilibrium in terms

of a continuous scalar variable (as opposed to a vector of traders’ private information)

and thus simplifies the exposition.

Trader i’s private belief is obtained by Bayes Rule and coincides with the signal quality

if the signal is h, πi = Pr(V = 1|h) = qi/(qi + (1 − qi)) = qi. Likewise, πi = 1 − qi if the

signal is l. In what follows we will use the distribution of these private beliefs. Denote the

density of beliefs f1(π) if the true state is V = 1 and by f0(π) if the true state is V = 0.

Appendix A fleshes out how these densities are obtained from the underlying distribution

of qualities.

Example of private beliefs. Figure 2 depicts an example where the signal qual-

ity q is uniformly distributed. The uniform distribution implies that the density of individ-

uals with signals of quality q ∈ [1/2, 1] is g(q) = 2q. In state V = 1, private beliefs π ≥ 1/2

are held by traders who receive high (h) signals of quality q = π, private beliefs π ≤ 1/2

are held by traders who receive low (l) signals of quality q = 1− π. Thus, in state V = 1,

the density of private beliefs π for π ∈ [1/2, 1] is given by f1(π) = Pr(h|V = 1, q = π)g(q =

π) = 2π, and for π ∈ [0, 1/2] it is given by f1(π) = Pr(l|V = 1, q = 1−π)g(q = 1−π) = 2π.

Similarly, the density conditional on V = 0 is f0(π) = 2(1 − π). The distributions of pri-

vate beliefs are then F1(π) = π2 and F0(π) = 2π − π2. Figure 2 further illustrates that

signals are informative: recipients in favor of state V = 0 are more likely to occur in this

state than in state V = 1.
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D The Trading Equilibrium

Traders who arrive at the same time do not observe each other’s actions. Consequently,

when posting the order, a trader does not know the transaction price.

The pricing rule: The dealer is competitive and receives zero expected profits.

Consequently, given the public history Ht, bt buy orders and st sell orders posted at time

t, the price at date t is

(1) pt = E[V |bt, st, Ht].

This equilibrium pricing rule is common knowledge.8

The informed trader’s optimal choice: An informed trader enters the market in

period t, receives his private signal and observes history Ht. He submits a buy order if,

conditional on his information and his own buy-decision, the expected transaction price

is at or below his expectation of the asset’s liquidation value; likewise for a sell order. He

abstains from trading if he expects to make negative trading profits.

The equilibrium concept. We will restrict attention to monotone and symmetric

decision rules for traders. Namely, we assume that an informed trader uses a “threshold”

rule: he buys if his private belief πi is at or above the time-t buy threshold πt, πi ≥ πt,

he sells if πi ≤ πt ≤ πt, and he abstains from trading otherwise. The rules are symmetric

in the sense that all informed traders use the same threshold decision rule.

Moreover, we will consider only equilibria in which people have no ex-post regrets. In

such equilibria, a trader would not wish to change his trading decision upon observing the

order flow. This no-regrets property is commonly attained in other settings. For instance,

it is an equilibrium feature of setups where agents submit demand-supply schedules such

as a rational expectations equilibrium (e.g. Grossman (1976)). With a regret free equi-

librium, the unobservability of the transaction price is benign. Such an equilibrium need

not exist, but we show that it does and that it is tractable.9

The price set by the dealer given the action profiles for the informed traders is referred

to as the equilibrium price.

8This equilibrium pricing rule is analogous to Kyle (1985), but there is a subtle difference, as we allow
the dealer to see all orders, whereas in Kyle, she observes only the aggregate order flow.

9Any regret free equilibrium is also a Perfect Bayesian Equilibrium (PBE), but the converse is not
true. Thus the existence of a regret-free equilibrium is not guaranteed by standard game theoretic results.
A regret free equilibrium requires no ex-post losses, implying the PBE condition that there are no ex
ante expected losses, by the Law of Iterated Expectations.
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III Equilibrium Prices and Behavior

A Pricing and Decision Rules

When the asset’s liquidation value is high, V = 1, a given trader will buy with probability

(1 − µ)/2 + µ(1 − F1(πt)), sell with probability (1 − µ)/2 + µF1(πt), and not trade with

probability µ(F1(πt) − F1(πt)), also accounting for noise traders’ actions. To compress

notation, for v ∈ {0, 1} we write these probabilities as follows βv,t := Pr(buy|V = v,Ht),

σv,t := Pr(sale|V = v,Ht), and γv,t := Pr(no trade|V = v,Ht).

The probability that a given trader is informed is independent of other agents’ iden-

tities and the asset’s liquidation value. Moreover, private beliefs are independent condi-

tional on the asset value. Consequently, traders’ actions are independent, conditional on

the asset value.

The dealer’s pricing rule. Suppose the dealer observes bt buy orders and st sell

orders. The dealer then revises her belief by Bayes’ Rule and sets the zero-expected profit

price

(2) pt(bt, st) = E[V |bt, st, Ht] =
Pr(bt, st|V = 1, Ht)pt

Pr(bt, st|V = 1, Ht)pt + Pr(bt, st|V = 0, Ht)(1 − pt)
,

where pt is the public belief that the state is high after history Ht, pt = Pr(V = 1|Ht). To

simplify the exposition, we will from now on omit the t subscripts and history Ht when

possible without ambiguity. When seeing b buys and s sales, the dealer knows that the

total number of traders, N , is at least b + s. Summing over all the possible realizations

of N ,10

(3) Pr(b, s|V = v) =
e−ν(1−γv)(νβv)

b(νσv)
s

b!s!
.

Substituting this probability into the pricing rule, we obtain

(4) p(b, s) =
e−ν(1−γ1)βb

1σ
s
1p

e−ν(1−γ1)βb
1σ

s
1p + e−ν(1−γ0)βb

0σ
s
0(1 − p)

≡ ℓM(b, s)p

ℓM(b, s)p + (1 − p)
,

where ℓM(b, s) denotes the dealer’s likelihood ratio of the high to low state, given b buy-

and s sell-orders,

(5) ℓM(b, s) := eν(γ1−γ0)

(
β1

β0

)b(
σ1

σ0

)s

.

10The details of the derivation for equation (3) as well as for equation (7) are in Appendix B.1.
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The informed trader’s trading decision rule. We will focus on the “buy” decision.

Consider trader i with private belief πi = π. He computes his expectation of the asset’s

value and the transaction price, conditional on his private information. The latter consists

of his presence in the market (N ≥ 1), his private signal and his action. He will buy if

E[V |π,N ≥ 1, i buys] ≥ E[p
∣
∣π,N ≥ 1, i buys]. To simplify the exposition, in what follows

we will omit N ≥ 1 and i’s trading decision when writing the informed buyer’s expectation.

As outlined above, we are searching for an equilibrium such that nobody wishes to change

their action upon observing the order flow. This implies, in particular, that the marginal

trader with the “buy-threshold” private belief π is just willing to buy for every realization

of buys and sales by others. Consequently, in equilibrium the threshold value π solves for

any b ≥ 1, s ≥ 0,11

(6) E[V |π, b, s] = p(b, s).

The Law of Iterated Expectations then implies that the marginal buyer’s expectation

coincides with this type’s expectation of the prices, E[V |π̄] = E[p|π̄]. Next, analogously

to the dealer’s pricing rule, the marginal trader’s expectation is given by

(7) E[V |π, b, s] =
ℓI(b, s; π)p

ℓI(b, s; π)p + (1 − p)
,

where ℓI(b, s; π) is the likelihood ratio of the high to low state, given the informed trader’s

private belief π, and supposing that he knew that there are b − 1 buy orders and s sell

orders posted by the other agents12

(8) ℓI(b, s; π) =
π

1 − π

βb−1
1

βb−1
0

σs
1

σs
0

∑
∞

h=0
(νγ1)h

(h+b+s)h!
∑

∞

h=0
(νγ0)h

(h+b+s)h!

.

B Equilibrium Condition

Using (4) and (7), indifference equation (6) can be rewritten as

(9)
ℓI(b, s; π)p

ℓI(b, s; π)p + (1 − p)
=

ℓM(b, s)p

ℓM(b, s)p + (1 − p)
for all (b, s).

11When the trader buys and there are a total of b buys and s sales, then b − 1 buys and s sales are
posted by the other traders.

12This expression is formally derived in Appendix B.2 in Step 1 of the existence proof. The main
difference between the dealer’s and the informed traders’ expectation is their assessment of the number
of traders in the economy: an informed trader knows that there is at least one trader (he) and thus he
employs a different probability measure compared to the dealer.
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Rearranging, in equilibrium π solves

(10) ℓI(b, s; π) = ℓM(b, s) for all (b, s).

Hence, equilibrium decision rules are independent of the public belief about the asset’s

liquidation value. Moreover, this condition is identical for any trading history and thus

the trading threshold is independent of the trading history. The equilibrium condition

for the marginal selling type π is analogous, the difference being that the marginal seller

assumes there to be b buy orders and s − 1 sell orders by the other traders.

C Equilibrium Existence and Uniqueness

Noise buying and selling occur with the same probability. Suppose the prior p is neutral,

p = 1/2. Then favourable and unfavourable signals are equally likely in expectation, and

assuming an equilibrium exists, intuitively, there must be one with symmetric marginal

buying and selling thresholds, π = 1 − π. Since by (10) the equilibrium decisions rules

do not depend on the past trading activity, the symmetry of thresholds extends to any

trading history. In Appendix B we show that the symmetric equilibrium exists and that

it is the only one.

Symmetry of the thresholds implies that traders require the same signal quality to

buy and sell. As the signal quality distribution is independent of the true value, a buy

in the high state is as likely as a sale in the low state and vice versa (we show this

formally in Appendix A in Lemma 1). Thus a no-trade occurs with equal probability in

each state, γ0 = γ1. We can then simplify the likelihood ratios ℓM(b, s) and ℓI(b, s; π)

(equations (5) and (8)) because the effects of no-trades cancel and rewrite the equilibrium

conditions ℓI(b, s; π) = ℓM(b, s) and ℓI(b, s; π) = ℓM(b, s) as

(11) π =
β1

β1 + β0

and π =
σ1

σ1 + σ0

.

Since thresholds are symmetric, π = 1−π, we have π = β0

β1+β0

. We are now ready to state

the existence and uniqueness theorem.

Theorem (Symmetric Equilibrium: Existence and Uniqueness)

There exist unique (π, π) such that 0 < π < π < 1, any trader with private belief π ≥ π

buys, any trader with private belief π ≤ π sells, any trader with π ∈ (π, π) does not trade.

These thresholds are symmetric, π = 1 − π, and invariant with respect to time and past

order-flows.
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The intuition for existence and uniqueness has a parallel in the relation of marginal and

average revenues. Suppose that the prior on the high liquidation value, V = 1, is 1/2.

Then the left hand side of the first expression in (11) is the belief of the marginal buyer,

the right hand side is the price that a trader must pay if there is only one buy (and no

sales). This price accounts for the average information content of the buy, conditional on

the informed buyer holding a belief at or above π. Loosely speaking, in equilibrium, the

marginal belief π must coincide with the average belief derived from the observed buying

decision.

We will now argue more formally that there exists a unique point where average and

marginal coincide and that it is in (1/2, 1). Suppose first that the marginal buyer has a

belief 1/2. Since an informed buyer holds a belief at or above 1/2, buying reveals favorable

information about the asset. The price that a buyer pays when he is the only trader in

the market is then strictly above 1/2, i.e. the average is above the marginal. Now suppose

that the marginal buyer has a belief of 1. An informed buy arises with probability 0, and

the price for a single buyer is 1/2 so that the average is below the marginal. Continuity

yields existence. Analogously to many standard economic problems, average and marginal

coincide at an extremum of the average. Since the marginal is strictly increasing there

can be at most one such intersection. Hence uniqueness.

Finally, the marginal buyer’s and seller’s beliefs cannot coincide. Each trade has an

effect on the price so that the marginal buyer’s belief, π̄, is strictly above 1/2. Threshold

symmetry then implies that π̄ is strictly above the marginal seller’s belief, π = 1 − π̄.13

IV Price, Volume and Order Imbalance

The five major observable variables in our model are the price, the price-variability, the

volume, the net order flow, and the order imbalance. The major primitives of the model

are the entry rate, the level of informed trading, and the distribution of information

qualities. In this section, we will discuss the relations among the observables for given

primitives. In the next section we will discuss how changes in the primitives affect the

observables.

The relations among the observables have been widely analyzed empirically and the

predictions of our model are in line with the empirical observations. Some of these pre-

dictions are not readily generated by other theoretical models. Moreover, the results in

this section are a stepping stone for the novel implications that we derive later on.

Let bt and st denote the numbers of buys and sales respectively in period t. Then

13Thresholds π and π coincide only when there is no informed trading, µ = 0, which we rule out.
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volume is Volt := bt + st; the net order flow is NOFt := bt − st; the order imbalance is the

absolute value of the net order flow, IBt := |bt−st|. As before, pt is the price at time t and

|∆pt| is the absolute value of the price change from t−1 to t. We use |∆pt| as a measure

of price-variability.

We will first analyze how the net order flow affects the price and how the current net

order flow affects the expectation of the future net order flow. We then ask how order

imbalances and volume affect price changes, how volume affects the order imbalance, and

finally how the order imbalance today affects the order imbalance tomorrow. We will not

study the relation of past and future prices explicitly. As is common in GM models, the

dealer’s expectation obeys the Law of Iterated Expectations so that the price process is

a martingale.

A Dynamics of Prices and Net Order Flows

Prices in our model incorporate all publicly available past information plus the new infor-

mation that is revealed by the current order flow and are thus informationally efficient.

With competitive pricing, equation (2) holds and thus the past price is a sufficient statis-

tic for the asset’s true value: pt−1(bt−1, st−1) = E[V |bt−1, st−1, Ht−1] = E[V |Ht] = Pr(V =

1|Ht) = pt. Threshold symmetry and time invariance imply the following law of motion

for transaction prices:

Proposition 1 (Price Dynamics)

In equilibrium, transaction price pt is determined by the number of buy- and sell-orders bt

and st respectively at date t and last period’s transaction price pt−1. It evolves as follows

(12) pt =

(

1 +
1 − pt−1

pt−1

(
β0

β1

)NOFt

)
−1

Proof: With threshold time invariance, the dealer’s pricing rule (4) becomes

p(bt, st|Ht) =
e−ν(1−γ1)β1

btσ1
stPr(V = 1|Ht)

e−ν(1−γ1)β1
btσ1

stPr(V = 1|Ht) + e−ν(1−γ0)β0
btσ0

st(1 − Pr(V = 1|Ht))
.

The time-t public prior, Pr(V = 1|Ht) = pt, coincides with the time-(t − 1) transaction

price pt−1. Threshold symmetry π = 1 − π implies β1 = σ0, β0 = σ1, γ1 = γ0. �

Corollary (Prices and Net Order Flows) For any history, the time-t transaction

price pt strictly increases in the time-t net order flow NOFt = bt − st.
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The corollary is empirically supported by, among others, Jones, Kaul, and Lipson (1994),

Brown, Walsh, and Yuen (1997) or Chordia, Roll, and Subrahmanyam (2002).

Proposition 1 states that the dynamics of prices are linked to the net order flow.14

It is thus important to understand the behavior of the latter. Threshold symmetry and

time-invariance yield the following result:

Proposition 2 (“Buys beget Buys”)

The expectation of the future net order flow increases in the current price as follows: the

expected time-t net order flow given history Ht is given by

E[NOFt|Ht] = (2pt−1 − 1)ν(β1 − β0).

Proposition 2 implies, in particular, that the expectation of the future net order flow

increases in the current price. To see why this is true, observe that in the high state,

V = 1, favourable signals are more likely than unfavourable ones. Consequently, when

the high state is more likely than the low state, pt > 1/2, one assigns higher probability

to situations with bt − st > 0 than to bt − st < 0. Since the current price increases in the

current net order flow (Proposition 1), a larger past net order flow creates the expectation

of a larger future net order flow. Our model thus predicts that buys are more likely to

follow buys than sales and vice versa. Empirically this was observed, for instance, by

Hasbrouck and Ho (1987) or by Chordia, Roll, and Subrahmanyam (2002).

Proposition 2 further implies that the dealer may accumulate an inventory. This

inventory build-up is facilitated by the dealer’s risk neutrality. If she were to account

for her inventory risk, then she would likely take pro-active steps to reduce her exposure.

This would, at least in part, counter the effect that we identify here.

The prediction of the corollary has also been generated in other dealer market models,

for instance in Kyle (1985) and Admati and Pfleiderer (1988). Our approach complements

the findings from these frameworks by admitting a non-zero expected order flow,15 and

it thus allows us to predict how the past order flow affects the expectation of the future

order flow (Proposition 2).

14In a degenerate version of our model, in which at most one trader can enter at a time, the corollary
is equivalent to Proposition 1 of Glosten and Milgrom (1985). The time-t transaction price pt becomes
the time-t ask price for (bt, st) = (1, 0) and the time-t bid price for (bt, st) = (0, 1). The corollary implies
that the ask price is greater and the bid price is smaller than the public expectation, which equals the
preceding period’s transaction price pt−1.

15See, for instance, equation (3.11) or (4.2) in Kyle (1985); the expectation of the net order flows
expressed there is zero by the Law of Iterated Expectations; similarly in Admati and Pfleiderer (1988).
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B Volume and the Order Imbalance.

While a larger net order flow increases the expectation of the future net order flow, the

same need not hold for their absolute values, i.e. the order imbalances. Indeed, the first

part of the following result shows that in expectation the order imbalance is independent

of past trading activity. Next, as signals are informative, an increase in the number of

traders yields proportionally more trades in the “right” rather than the “wrong” direction.

Hence larger volume should on average lead to larger order imbalances. The second part

of the following result confirms this intuition.

Proposition 3 (Order Imbalance and Volume)

(a) The expected absolute value of the time-t net order flow E[IBt

∣
∣Ht] is inde-

pendent of the transaction history: E[IBt

∣
∣Ht] = E[IBt′

∣
∣Ht′ ] ∀t, t′.

(b) Conditional on the realized time-t volume, the expected absolute value

of the time-t net order flow E[IBt

∣
∣Volt, Ht] increases in Volt.

Studies that focus on order imbalances (e.g. Chan and Fong (2000)) implicitly yield (b),

and we are not aware of empirical studies that test (a).

The positive relation between volume and order imbalances that we identify here

provides insights for the strong empirical performance of the so called Amihud measure.

Developed in Amihud (2002), it measures (il-)liquidity by the ratio of the absolute value

of the daily dollar return of a stock to its dollar trading volume. At first sight volume

seems to be too coarse a measure because, say, 2 million shares bought by or sold to a

dealer affect liquidity differently than buy and sell orders of 1 million shares each arriving

simultaneously. Proposition 3 predicts, however, that the Amihud measure is correlated

with measures that employ the order imbalance — as has been observed empirically.

C Price Variability.

We will now investigate how volume and the order imbalance affect the absolute values

of price changes, or price variability, |∆pt| := |pt − pt−1|. Proposition 1 implies that the

transaction price increases in the net order flow. Yet, it is not immediate that a larger

order imbalance leads to a larger price change because the price is not linear in the net

order flow. Suppose that pt−1 > 1/2 so that the time-t prior favours the high liquidation

value. Then, for a given order imbalance IBt = |bt − st|, a negative net order flow, bt < st,

lowers the price by more than a positive net order flow, bt > st, would increase it by. In

other words, a net order flow that reconfirms the prevailing public opinion leads to smaller

price changes than one that is at odds with it. However, for the expected effect we show
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Proposition 4 (Price Variability and the Order Imbalance)

The expected absolute value of the price change at time t conditional on the order imbal-

ance, E[|∆pt|
∣
∣IBt, Ht], increases in the order imbalance IBt.

The results of Propositions 3 and 4 show that a larger volume leads to larger order imbal-

ances and that larger order imbalances lead to higher price variability. As a consequence,

intuitively, there should be a positive relation between volume and the magnitude of price

changes. The following proposition confirms this intuition and shows that in expectation

higher volume leads to larger price changes.

Proposition 5 (Price Variability and Volume)

The expectation of the absolute price change conditional on the realized time-t volume

E[|∆pt|
∣
∣Volt, Ht] increases in volume Volt.

Proposition 5 has been empirically documented in several studies, see, for instance,

Gallant, Rossi, and Tauchen (1992) or Karpoff (1987) for earlier references. Chordia, Roll,

and Subrahmanyam (2002) and Chan and Fong (2000) additionally highlight the effect of

the order imbalance on price variability, providing evidence for both Propositions 4 and

5.

The positive relation between price volatility and volume has also been obtained the-

oretically in other settings. For instance, Wang (1994) shows this relation in a CARA-

Gaussian rational expectations setup. Admati and Pfleiderer (1988) generate a result

similar to our Proposition 5 in a setting where the number of traders is endogenously

determined by the extent of discretionary noise trading. Specifically, they show that price

variability is larger in periods with concentrated trading.

Although rational expectation models with a CARA-Gaussian structure yield valuable

insights into the volume-volatility relation, results on order imbalances such as Proposition

4 can only obtain in markets that do not perforce clear, such as intermediated markets.

The relation of volume and the order imbalance and that of price-variability and the order

imbalance have not been explicitly analyzed in either Kyle (1985) or Admati and Pfleiderer

(1988). Further, models in this tradition have an underlying normal structure and for a

tractable volume analysis it is important that the expected net order flow is zero.16 To

understand and compute the dynamics of prices, volume, and order imbalances (as studied

in Propositions 3 and 4) it may, however, be desirable to have no such restriction. As

our framework explicitly admits non-zero expected net order flows (see Proposition 2),

our findings in Propositions 3 and 4 are arguably based on a less restrictive premise.

16If the equilibrium has this property, then one can employ half-normal distributions to compute the
expected volume.
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Moreover, higher volume in our model is closely linked to a larger transaction rate, a

topic that we discuss below in more detail.

D Duration

The time span between transactions, also called the “duration” (see Engle and Russell

(1998) for a formal definition), has recently gained attention in the literature. Lesmond,

Ogden, and Trzcinka (1999) use duration to estimate transaction costs. Foucault, Kadan,

and Kandel (2005) develop a theoretical model in which liquidity traders account for

duration in their choice of submitting market or limit orders.

The simplest cause for a long duration is a low arrival rate of traders. Yet, this view

does not consider that the arrival rate of trades is endogenous to the market environment.

For instance, high transaction costs may deter people from trading, thus lowering the

transaction rate.17

In our model the transaction rate is determined by the exogenous Poisson arrival

rate ν, the probability that a trader is informed µ, and the trading thresholds π and π.

Under a Poisson process arrival rate, a zero-arrival occurs with positive probability. More

importantly, if none of the arriving informed traders hold beliefs that are extreme enough,

that is, if πi ∈ (π, π) for all informed traders, then there will also be no trading. The

probability of no trading in state V =v follows from equation (B-1) in Appendix B.1.18

Pr(no trade|V = v)

= Pr(no arrival|V = v) +
∞∑

j=1

Pr(j arrivals|V = v)Pr(∀j : πj ∈ (π, π)|V = v) = e−ν(1−γv).

Since γ1 = γ0, we have Pr(no trade) = pte
−ν(1−γ1) + (1 − pt)e

−ν(1−γ0) = e−ν(1−γ1), where

γv = µ(Fv(π)−Fv(π)). Consequently, the arrival of no-trades is determined solely by the

exogenous parameters of the model and the equilibrium behavior, and it does not change

with the trading history.

Next, occurrences of the events “trade” and “no-trade” are a Bernoulli process. As

17When duration is long, limit orders become implicitly more expensive because it will take longer for
them to be filled. In this sense, duration adds to the transaction costs. Lesmond, Ogden, and Trzcinka
(1999) discuss this direct impact of duration on transaction costs. In Foucault, Kadan, and Kandel (2005)
duration feeds back into transaction costs, the idea being that for longer duration, traders are more
inclined to submit market orders (which, by definition, get executed faster than limit orders). Studying
the impact of this general relation in a theoretical trading model, they show that longer duration decreases
the bid-ask-spread because traders submit more aggressive limit orders. While we do not study the choice
between market and limit orders, our framework adds to the discussion by offering an informational angle
on endogenous arrival rates.

18Equation (B-1) defines the probability that the market marker attaches to b buys and s sales; here
we study the special case with b = s = 0.
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trading in our model occurs at discrete points in time, the time between two periods with

transactions is determined by this Bernoulli process. A simple measure for duration in our

model is the expected number of future consecutive no-trading periods. The probability

of trading is the same for all periods and we can compute

D(ν, γ1) = 1 period · Pr(1 period no trade) + 2 periods · Pr(2 periods no trade) + . . .

=
∞∑

t=1

t ·
(
e−ν(1−γ1)

)t
=

e−ν(1−γ1)

(1 − e−ν(1−γ1))2
.(13)

This measure depends solely on γ1 and the parameter ν, it is increasing in γ1 and de-

creasing in ν. The above discussion implies

Proposition 6 (Duration) Duration D(ν, γ1) is independent of the trading history.

In models where the underlying noise and information are normally distributed, the

number of informed traders must be known (noise trader orders are only considered as

an aggregate figure). Moreover, every informed trader in these models trades. Taken

together, this effectively fixes the number of transactions, as was pointed out by, for

instance, Jones, Kaul, and Lipson (1994). Thus these models are not designed to analyze

transaction rates and, relatedly, duration. In our setup, on the other hand, the number

of traders is uncertain and the transaction rate is endogenous.

Episodes of no or low trading activity also arise in Easley and O’Hara (1992). These

episodes are most likely to obtain when no private information is available and transactions

stem exclusively from noise traders. Low trading activity then indicates that trading

occurs for non-informational reasons, and it implies low adverse selection costs. We

complement Easley and O’Hara (1992) and provide an interpretation of low transaction

rates in presence of private information. In our setting, informed traders are always

present but they may choose not to trade if their private information is not sufficiently

precise. Lower trading activity then corresponds to more accurately informed active

traders, and longer duration is associated with higher adverse selection costs and higher

transaction costs.

V Changes in Arrival Rates and Information Quality

A Comparative Statics on Arrival Rates

The expected number of traders in our model is governed by the Poisson parameter ν.

Intuitively, an increase in ν leads to a higher expected volume, and as a consequence, to a

higher absolute value of the order imbalance, larger price changes, and shorter duration.
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Proposition 7 (Comparative Statics on the Entry Rate)

As the exogenous entry rate ν increases, so do expected trading volume, E[Volt|Ht], the

expected value of the order imbalance, E[IBt|Ht], and the expected magnitude of the price

change, E[|∆pt|
∣
∣Ht]. Duration D(ν, γ1) decreases.

An increase in the arrival rate ν signifies a persistent switch in investor composition, for

instance, triggered by a company’s inclusion into a major index (so that index-tracking

funds must hold the stock) or the advent of internet-based trading. Our model thus

predicts, in particular, that any such event should lead to higher price variability, larger

volume and lower duration.

In our framework, an increase in ν proportionally increases the (expected) number of

both, informed and uninformed traders. Admati and Pfleiderer (1988) perform a related

comparative static by increasing the (known) number of informed traders. They find, in

their setting with no timing, that such an increase leads to higher trading volume but

does not affect the price variability.

B Comparative Statics on Quality Distributions

We will now study how persistent changes in the information quality affect the marginal

trading types and through them price informativeness, volatility and volume.

In contrast to setups with normally distributed information, traders in our model need

not know the quality of others’ information but require only knowledge of the overall

distribution of information in the economy. We are thus able to analyze the impact of

economy-wide shifts in information processing. Further, traders in our model may abstain

from trading, and we can thus study changes in transaction rates. The importance of the

transaction rate is highlighted, for instance, by Jones, Kaul, and Lipson (1994), who

show that the positive volume-volatility relation is driven by the number of transactions.

Chordia, Roll, and Subrahmanyam (2008) argue that turnover has increased over the last

decade because of an increase in the frequency of (small) transactions.

Parametrization of Information Quality. Systematic shifts in a quality distri-

bution occur when there is a persistent change in the fraction of traders who are better

informed or more capable at processing information. A positive shift can be triggered,

for instance, by more extensive analyst coverage for a stock, as this would improve the

average trader’s information. A stock may also attract a more informed clientele when it

gets included in a major index, as major funds will then add it to their portfolios. With

such an inclusion, the company often faces additional disclosure requirements, further af-

fecting the distribution of traders’ signal qualities. Many of these changes are observable
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and the predicted impacts can be tested empirically. Additionally, the quality of analysts’

earning forecasts can serve as a proxy for the average information quality.

In what follows, we will formally model improvements in information quality by shifts

in the underlying distribution in the sense of first order stochastic dominance (FOSD).

To study these shifts we will employ a family of signal quality distributions that is pa-

rameterized by a scalar θ ∈ Θ, and we will assume that the signal distributions are twice

differentiable with respect to θ; details are in Appendix A.2. Thus when we speak of

a shift in information quality or an improvement in information quality we mean that

the “new” quality distribution first-order stochastically dominates the “old” one so that

under the new distribution, traders have systematically higher quality information.

Marginal Trading Types, Trade Informativeness and Market Depth. To

describe effects of signal quality distributions on empirically observable variables, we must

first establish how they affect traders’ behavior. The major variable of interest is thus the

belief of the marginal buyer and seller.

The informativeness of a transaction is synonymous with its marginal impact on the

price. The usual interpretation of the price impact of a trade is that it is inversely

related to market depth.19 As can be seen from the price dynamics equation (12), the

price impact is inversely related to the ratio of “wrong” to “correct” trading decision

probabilities: β0/β1 = σ1/σ0. Consequently, the smaller this ratio is, the stronger is the

price impact of the marginal order.

Proposition 8 (Trade Informativeness and Price Impact)

As information quality improves,

(a) The buy-threshold private belief π(θ) increases and the sell-threshold π(θ) decreases.

(b) Market depth, measured by β0(π(θ))/β1(π(θ)), decreases and each trade has a

larger price impact.

Suppose that a regulatory shift causes traders to be on average better informed and that,

for the sake of the argument, the buying and selling thresholds remained unchanged.

Then each trade would become more informative and traders would be able to learn

more from the price. One might imagine that, as a consequence, the marginal buyers

and sellers would require less precise private information. This would cause the selling

threshold to increase and the buying threshold to decrease. This argument, however,

neglects the dealer’s perspective who faces the adverse selection problem and who has to

protect herself against well-informed traders. As after the shift traders are systematically

19For instance, in models in the tradition of Kyle (1985), the price is a linear function of the net order
flow. Market depth is then measured by the inverse of the slope coefficient of the order flow.
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better informed, the dealer is more likely to encounter well-informed traders. Thus for a

given order flow, she must set prices that are more extreme (she raises prices for positive

net order flows and lowers them for negative ones). In equilibrium, the adverse selection

effect dominates, and, as a result, traders require more precise information to trade.

Trading Volume, Order Imbalance and Price Variability. As information qual-

ity improves, there are two opposing effects. First, there are more traders with high-quality

information. For the same threshold, this would increase volume. Second, trading thresh-

olds become more extreme because the dealer has to account for the increased adverse

selection problem. The latter effect increases the price impact, and it is thus, effectively,

an increase in transaction costs. Ceteris paribus, increased transaction costs would lead

to lower volume. In what follows we will provide a sufficient (technical) condition so that

the first effect dominates and volume increases.

Volume in our model coincides with the number of transactions. Its expectation

is proportional to the probability that a trader who arrives at the market chooses to

buy or sell. The expected number of arriving traders is the Poisson parameter ν and

traders’ decisions are independent conditional on the asset value. The expected number of

transactions given this Poisson process can then be obtained by multiplying the exogenous

arrival rate with the probability that an arriving trader initiates a transaction in each state

(a formal derivation is part of the proof of Proposition 7)

E[Volt] = ptν(β1 + σ1) + (1 − pt)ν(β0 + σ0) = ν(β1 + σ1).

The last equality follows from the symmetry of buy- and sell-threshold private beliefs.

For an analytical result, we restrict attention to a class of distributions for which shifts

in the quality distribution occur monotonically and not too drastically. Defining

Ψ(π, θ) :=

∫ π

0

1

2
[F1(s|θ) + F0(s|θ)]ds,

and denoting partial derivatives by subscripts, we require the distributions to satisfy

(⋆) 2Ψπ,θΨ + (2π − 1)(Ψπ,πΨθ − Ψπ,θΨπ) < 0.

This condition is, for instance, satisfied for the class of quadratic quality distributions

that is outlined at the end of Appendix A or for the symmetric Beta distribution.

Proposition 9 (Signal Quality Shifts and Observable Variables)

Assume condition (⋆) holds. Then as information quality increases, the expected volume,

E[Vol|θ], the expected order imbalance, E[IB|θ], and the expected price variability, E[|∆pt||θ]
all increase. Duration D(ν, γ1; θ) decreases.
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Intuitively, as the threshold quality increases, so does the expected order imbalance — a

higher marginal trading quality implies that a smaller fraction of traders take the “wrong”

action. Combined with increasing volume, higher imbalances become more likely (as

implied by Proposition 3). A similar mechanism applies to price changes and thus price

variability. Duration decreases in the transaction probability, 1−γ1 = β1 +σ1 (expression

(13)). The latter is proportional to volume and increases with signal quality.

This proposition is empirically supported by Chordia, Roll, and Subrahmanyam (2008)

who argue that “the increase in turnover is associated with greater production of private

information”.

Our results in Propositions 8 and 9 relate to the theoretical predictions on informa-

tion quality that have been obtained by varying traders’ signal precisions. For instance,

Wang (1994) shows in a rational expectations framework that as the precision of informa-

tion improves, volume increases and the correlation between volume and price variability

decreases. In Admati and Pfleiderer (1988), an increase in signal precision is offset by

trading activity so that there is no effect on price variability. The price impact (measured

by the Kyle-λ) of better quality information is ambiguous.20

We contribute to the existing theoretical literature by analyzing how the distributions

of economy-wide information and information processing skills affect major observable

trading variables. A redistribution of information represents, for instance, a persistent

shift in the investorship, which can occur when a stock gets included in a major index.

Such an inclusion will typically increase major funds’ holdings of the stock and may

lead to a relatively higher fraction of well-informed traders. In our framework, a shift in

information quality is accompanied by changes in trader participation rates. This feature

allows us to derive novel predictions on the impact of signal quality on duration.

C Comparative Statics on Noise Trading

When the fraction of informed traders, µ, increases, then, ceteris paribus, each trade is

more likely to be initiated by an informed trader and the adverse selection costs for the

dealer increase. She will thus revise prices and informed traders will require a higher

quality signal to trade. We then show

Proposition 10 (Comparative Statics for Noise Trading)

As the level of informed trading µ increases
(a) the buy-threshold private belief π(µ) increases and the sell-threshold π(µ) decreases,

(b) expected trading volume E[Vol|µ] decreases, and

(c) duration D(ν, γ1; µ) increases.

20See equation (18) in their paper.
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To see why volume declines in the proportion of informed traders, consider the following

thought experiment in which a noise trader is substituted with an informed trader. As a

noise trader, he would have traded with certainty, whereas as an informed trader, he needs

information of sufficient quality to be trading. Moreover, compared to the situation with

a lot of noise, he needs better quality information which further reduces the probability

of a transaction. These two effects decrease volume and increase duration.

As volume declines, Proposition 3 implies that, ceteris paribus, the expected order

imbalance declines. At the same time, each trade is more informative and thus has a

higher effect on the price. As the two effects are opposing, the direction of change in price

variability is unclear. Numerical simulations reveal that the first effect dominates:21

Numerical Observation (Noise and Volatility) Price variability increases in µ.

Foster and Viswanathan (1993) show empirically that volume and adverse selection are

(weakly) positively correlated, providing support for the thesis that quality improvement

shifts (which, by Proposition 9, increase adverse selection) lead to higher volume.

Summary. The above discussion implies that trading volume and volatility are negatively

related for changes in µ. So while signal quality shifts and increases in informed trading

both increase adverse selection costs, they generate opposing implications for the volume-

volatility relation. Empirically there is a positive relation between volume and volatility.

Thus the implications of shifts in noise trading are at odds with empirical findings, while

the implications for information-quality shifts are in line with the data.

VI Conclusion

Combining features of Glosten and Milgrom (1985) and Kyle (1985) in a simple model of a

dealer market, we study the dynamic relations among volume, order imbalances and price

variability. In financial markets, the number of active traders and the precision of their

information are unknown. Incorporating these features into the frameworks that employ

normal distributions would render the analysis intractable — in contrast, our setup allows

us to study unknown precisions and an unknown number of traders.

We first derive the trading equilibrium and study its properties, in particular, with

respect to the dynamic relationships among the major trading variables. We establish

that higher volume leads to higher price volatility and higher order imbalances. We then

study changes in the information structure to understand the effects of the distribution

21Details for the simulations are available upon request from the authors. The distribution class that
we employed for the numerical analysis is outlined at the end of Appendix A.
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of information. We show that first order stochastic dominance improvements of signal

quality lead to higher volume, order imbalances and price variability.

The results from signal quality shifts are consistent with empirical evidence and have

appealing economic interpretations. Information quality improves when, for instance, an-

alyst coverage increases, when hedge funds newly invest in a company, when the company

adopts a more transparent information release policy, or when regulators require compa-

nies to disclose more information. Our results indicate that these measures will lead not

only to more efficient prices (because active traders have better information) but also to

higher trading volume. Our final comparative static studies changes in the entry rate: as

the entry rate increases, so do price variability and volume. Empirically, entry rates are

affected, for instance, when a stock is in- or excluded from an index.

In summary, our paper identifies several new channels that affect the volume-volatility

relation and thus contributes to our understanding of common empirical findings.

Table 1 summarizes our theoretical findings and empirical predictions. It also either

lists existing evidence for the respective result or suggests testing procedures for empirical

verification or falsification.

A Appendix: Quality and Belief Distributions

In the main text, we describe trading behavior in terms of the trader’s belief π that the

asset’s value is high. This description is mathematically convenient because we can focus

on a scalar variable and not the vector consisting of the signal (h or l) and the signal

quality. We now describe how the belief distributions are obtained from the signal quality

distributions, and we describe properties of the belief distributions. In the second part of

the appendix we discuss the parametrization of signal qualities used in Section V.

A.1 Derivation and Properties of the Belief Distribution

Financial market microstructure models with binary signals and states typically employ

a constant, commonly known signal quality q ∈ [1/2, 1], with Pr(S = v|V = v) = q. Our

framework has a continuum of possible qualities with a continuous density function and we

will map traders’ signals and their qualities into a continuous private belief on [0, 1]. The

quality parametrization on [1/2, 1] is natural, as a trader who receives a high signal h will

update his prior in favor of the high liquidation value, V = 1, and a trader who receives

a low signal l will update his prior in favor of V = 0. We thus use the conventional

parametrization on [1/2, 1] in the main text.
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However, to characterize the map from traders’ signal and qualities into their private

beliefs and to derive the distributions of the latter, it is mathematically convenient to

normalize the signal quality so that its domain coincides with that of a private belief.

We will denote the distribution function of this normalized quality on [0, 1] by G and

its density by g, whereas the distribution and density functions of original qualities on

[1/2, 1] will be denoted by G̃ and g̃ respectively.

The normalization proceeds as follows. Without loss of generality, we will employ

the density function g that is symmetric around 1/2. For q ∈ [0, 1/2], we then have

g(q) = g̃(1 − q)/2 and for q ∈ [1/2, 1], we have g(q) = g̃(q)/2.

Under this specification, signal qualities q and 1− q are equally useful for the individ-

ual: if someone receives signal h and has quality 1/4, then this signal has “the opposite

meaning”, i.e. it has the same meaning as receiving signal l with quality 3/4. Signal

qualities are assumed to be independent across agents, and independent of the security’s

liquidation value V .

Beliefs are derived by Bayes Rule, given signals and signal-qualities. Specifically, if

a trader is told that his signal quality is q and receives a high signal h then his belief

is q/[q + (1 − q)] = q (respectively, 1 − q if he receives a low signal l), because the prior

is 1/2. The belief π is thus held by people who receive signal h and quality q = π and by

those who receive signal l and quality q = 1− π. Consequently, the density of individuals

with belief π is given by f1(π) = π[g(π) + g(1 − π)] in state V = 1 and analogously by

f0(π) = (1 − π)[g(π) + g(1 − π)] in state V = 0. Smith and Sorensen (2008) prove the

following property of private beliefs (their Lemma 2):

Lemma 1 (Symmetric beliefs, Smith and Sorensen (2008))

With the above the signal quality structure, private belief distributions satisfy F1(π) =

1 − F0(1 − π) for all π ∈ (0, 1).

Proof: Since f1(π) = π[g(π) + g(1 − π)] and f0(π) = (1 − π)[g(π) + g(1 − π)], we have

f1(π) = f0(1 − π). Integrating, F1(π) =
∫ π

0
f1(x)dx =

∫ π

0
f0(1 − x)dx =

∫ 1

1−π
f0(x)dx =

1 − F0(1 − π). �

A direct implication of this lemma is that with symmetric thresholds, π = 1 − π, a

buy in state V = 1 is as likely as a sale in state V = 0, because

β1 = (1 − µ)/2 + µ(1 − F1(π)) = (1 − µ)/2 + µF0(1 − π) = (1 − µ)/2 + µF0(π) = σ0.

Similarly, β0 = σ1. The belief densities satisfy the monotone likelihood ratio property as

f1(π)

f0(π)
=

π[g(π) + g(1 − π)]

(1 − π)[g(π) + g(1 − π)]
=

π

1 − π
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is increasing in π.

One can recover the distribution of qualities on [1/2, 1], denoted by G̃, from G by

combining qualities that yield the same beliefs for opposing signals (e.g q = 1/4 and

signal h is combined with q = 3/4 and signal l). With symmetric g, G(1/2) = 1/2, and

(A-1) G̃(q) =

∫ q

1

2

g(s)ds +

∫ 1

2

1−q

g(s)ds = 2

∫ q

1

2

g(s)ds = 2G(q) − 2G(1/2) = 2G(q) − 1.

A.2 Stochastic Dominance of Belief Distributions.

Section V.B focusses on families of signal quality distributions that are described by a

parameter θ ∈ Θ ⊆ R and that obey first order stochastic dominance with respect to θ.

First order stochastic dominance refers to the distribution of qualities G̃ on [1/2, 1]. We

will now argue that when G̃(·|θh) first order stochastically dominates G̃(·|θl), then G(·|θl)

second order stochastically dominates G(·|θh).

Loosely speaking, a first order stochastic dominance shift in G̃ increases the number

of high (close to 1) quality signals and decreases the number of low (close to 1/2) quality

signals. Symmetry of the quality density function g on [0, 1] then implies that under

G(·|θh) there are relatively more signals with qualities close to 0 and 1 and relatively

fewer signals with qualities around 1/2. Since g is symmetric around 1/2, the mean

quality on [0, 1] is constant and equals 1/2. The above discussion implies, intuitively, that

G(·|θh) is a mean preserving spread of G(·|θl).

Formally, suppose that G̃(q|θh) FOSD G̃(q|θl) for q ≥ 1/2, i.e. for q ∈ [1/2, 1],

G̃(q|θh) ≤ G̃(q|θl). By symmetry of densities, for q < 1/2, G(q|θh) ≥ G(q|θl) so that

(A-2)

∫ x

0

G(s|θh)ds −
∫ x

0

G(s|θl)ds ≥ 0 ∀x ≤ 1.

In other words, if G̃ FOSD G̃′, then G′ SOSD G.

An example for a parametric class of distributions on [0, 1] that obeys second order

stochastic dominance is the following class of quadratic quality distributions with density

(A-3) g(q|θ) = θ

(

q − 1

2

)2

− θ

12
+ 1, q ∈ [0, 1] and θ ∈ [−6, 12].

This class includes the uniform density (for θ = 0); the distribution of qualities G and G̃
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on [1/2, 1] can be obtained by integration as outlined in (A-1):

G̃(q|θ) = 4q + 4θq(q − 1)(q − 1/2)/3 − 1, G̃θ(q|θ) = 2q(q − 1)(q − 1/2)/3 < 0 for q > 1/2.

This class of distributions was used to establish the Numerical Observation in Section V.

B Appendix: Omitted Proofs

B.1 Expectations of Dealer and Informed Traders.

Derivation of Equation (3) in the Dealer’s Pricing Rule. Suppose that the dealer

observes b buy orders and s sell orders and that people follow thresholds rules so that

each trader with belief π ≥ π buys and each trader with belief π ≤ π sells. The time-t

price satisfies p(b, s) = E[V |b, s,Ht], which, by equation (2), depends on Pr(b, s|Ht, V ).

No trades are intrinsically unobservable. When seeing b buys and s sales, the dealer

knows that the total number of traders, N , is at least b+s — but N may be larger because

informed traders with π ∈ (π, π) choose not to trade. We first determine Pr(b, s|Ht, V,N)

and then sum over all the possible outcomes N = b + s + h, where h = 0, . . . ,∞ denotes

the number of no trades and N is the number of potential traders. Next, N traders

arrive with Poisson probability νNe−ν/N !. Conditional on the asset’s true value, and

these N people select into buyers, sellers, and those people who do not trade according

to a multinomial distribution. For fixed b and s we have

Pr(b, s|V = v) =
∞∑

N=b+s

Pr(b, s| V = v,N)Pr(N)(B-1)

=
∞∑

N=b+s

N !

b!s!(N − b − s)!
βv

bσv
sγv

N−b−s νNe−ν

N !
=

e−ν(1−γv)νb+s

b!s!
βv

bσv
s.

Informed Trader’s Expectation. Consider a trader who intends to buy and suppose

that the informed trader observes b − 1 buy orders and s sell orders by others. Then

E[V |π, b, s,Ht] =
πPr(b, s|π,Ht, V = 1)pt

πPr(b, s|π,Ht, V = 1)pt + (1 − π)Pr(b, s|π,Ht, V = 0)(1 − pt)
.

As for the dealer, no trades are unobservable. We thus derive the informed trader’s

expectation for a known number of traders, and then sum over all the possible outcomes

b + s + h ≥ 1, h = 0, . . . ,∞; accounting for the fact that the informed trader knows that
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there is at least 1 trader. Omitting Ht, for a trader who buys

Pr(b, s|π, V = v) =
∞∑

Vol=b+s

Pr(b, s|π, V = 1, N = Vol)Pr(N = Vol|N ≥ 1)

= βv
b−1σv

s

∞∑

h=0

e−ν

1 − e−ν

νh+b+s

(h + b + s)!
γv

h (h + b + s − 1)!

h!(b − 1)!s!

=
e−ν

1 − e−ν

βv
b−1σv

sνb−1+s

(b − 1)!s!

∞∑

h=0

(νγv)
h

(h + b + s)h!
.

B.2 Proof of the Existence and Uniqueness Theorem

The existence theorem states that an equilibrium exists, that the thresholds in this equi-

librium are symmetric, π = 1−π, and that it is unique. We first show that in equilibrium

the thresholds must be history invariant and symmetric. We then show existence and

uniqueness of the indifference thresholds. In the final step, we verify that the posited

equilibrium behavior is incentive compatible, i.e. that for traders with beliefs higher than

the buying thresholds it is optimal to buy, that for traders with beliefs below the selling

threshold it is best to sell, and that all others optimally abstain.

Step 1: History Invariance and Threshold Symmetry. Assume an equilibrium

exists at each time t. Then the indifference thresholds are independent of the trading

history and symmetric, π = 1 − π at all dates t.

Proof: History invariance follows from equation (10).

Inserting the probabilities that we derived at the beginning of this appendix into the

second expression in (9), we have that ℓI(b, s; π) = ℓM(b, s) is equivalent to

βb−1
1 σs

1π
∑

∞

h=0
(νγ1)h

(h+b+s)h!

βb−1
0 σs

0(1 − π)
∑

∞

h=0
(νγ0)h

(h+b+s)h!

=
βb

1σ
s
1

βb
0σ

s
0

⇔
∑

∞

h=0
(νγ1)h

(h+b+s)h!
∑

∞

h=0
(νγ0)h

(h+b+s)h!

=
β1

β0

1 − π

π
(B-2)

Since b + s ≥ 1, each sum in the above expressions converges and the ratios are well-

defined. Suppose that π 6= 1 − π. This implies, in particular, that γ0 6= γ1. Since π must

solve (B-2) for all (b, s), we must have, in particular,

∑
∞

h=0
(νγ1)h

(h+1)h!
∑

∞

h=0
(νγ0)h

(h+1)h!

=

∑
∞

h=0
(νγ1)h

(h+2)h!
∑

∞

h=0
(νγ0)h

(h+2)h!

=
β1

β0

1 − π

π

Using
∞∑

h=0

(νγ)h

(h + 1)h!
=

eγ − 1

γ
and

∞∑

h=0

(νγ)h

(h + 2)h!
=

1 + eγγ − eγ

γ2
,
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π 6= 1 − π that solves (B-2) exists only if there exist γ0 6= γ1 on (0, 1) such that

ϕ(γ1) ≡
γ1(e

γ1 − 1)

1 + eγ1γ1 − eγ1

=
γ0(e

γ0 − 1)

1 + eγ0γ0 − eγ0

≡ ϕ(γ0).

Function ϕ(γ) decreases on (0, 1), thus such γ0 6= γ1 do not exist.

Step 2: Existence and Uniqueness. In an equilibrium, any trade is informative,

that is indifference thresholds are in (0,1). The argument proceeds by contradiction.

Suppose, for instance, that π = 0 and π = 1, that is, no informed trader buys or sells.

All trades are then uninformative, and the dealer would set the price to 1/2. This implies

that the best response of any informed trader with a private belief below 1/2 is to post a

sell-order, and the best response of any informed trader with belief above 1/2 is to post

a buy-order, a contradiction. Cases π = π = 0 and π = π = 1 are analogous.

Since thresholds are symmetric in equilibrium, we can focus on π. Trade informative-

ness together with equation (11) on π imply that π must be at least 1/2. What remains

to show is existence and uniqueness of π ∈ [1/2, 1).

Step 2(i): We will now show that the first expression in (11) on π can be rewritten as

(B-3)
2π − 1

4

µ + 1

µ
−
∫ π

0

G(s) ds = 0,

where G(q) is the cumulative distribution function of the quality distribution.

In the main text we have shown that if thresholds are symmetric, i.e. if π = 1 − π, then

γ1 = γ0 and π solves π = β1/(β1 + β0). Integrating density f1(π), derived in Appendix A,

and using the symmetry of g around 1/2, we have

F1(π) = 2πG(π) − 2

∫ π

0

G(s) ds ⇒ β1 = (1 − µ)/2 + µ

(

1 − 2πG(π) + 2

∫ π

0

G(s) ds

)

.

Expressing F0(π) analogously, F1(π) + F0(π) = 2G(π) so that β1 + β0 = 1 + µ− 2µG(π).

Then π = β1/(β1 + β0) can be rewritten as (B-3).

Step 2(ii): We establish that (B-3) has a unique solution π ∈ (1/2, 1).

The left hand side of (B-3) is continuous and strictly increasing in π: its slope is

(1 + µ)/2µ − G(π) > 1 − G(π) > 0 for all µ ∈ (0, 1). At π = 1/2, the left hand side

of (B-3) is −
∫ 1/2

0
G(s)ds < 0. At π = 1, it is (µ + 1)/4µ − 1/2 > 0 for all µ ∈ (0, 1).22

Consequently, there exists a unique root π ∈ (1/2, 1).

Step 3: Monotonic decision rules in equilibrium. We will now argue that

the equilibrium behavior depicted above is indeed incentive compatible. Namely, if an

22Symmetry of g around 1/2 yields
∫

1

0
G(s)ds = sG(s)ds

∣
∣
1

0
−
∫

1

0
sg(s)ds = 1 − 1/2 = 1/2.
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informed trader’s has a private belief above the buying threshold, then buying is the

optimal action; similarly for selling. Thus for the equilibrium thresholds π > π any

trader with a private belief π ≥ π prefers to post a buy order, any trader with a private

belief π ≤ π prefers to post a sell order, and any trader with a private belief in (π, π)

chooses to refrain from trading. Specifically, we show the following.

Let π, π be the indifference thresholds that satisfy the conditions in (11). Any trader

with belief π > π makes a positive profit from buying, any trader with belief π < π makes

a loss from buying; any trader with belief π < π makes a positive profit from selling, any

trader with belief π > π makes a loss from buying.

Proof: Take πi > π. We shown before (for πi ≡ π) that

E[V |b, s, πi] =
ℓI(b, s; πi)p

ℓI(b, s; πi)p + (1 − p)
with ℓI(b, s; πi) =

πi

1 − πi

βb−1
1 σs

1

∑
∞

h=0
(νγ1)h

(h+b+s)h!

βb−1
0 σs

0

∑
∞

h=0
(νγ0)h

(h+b+s)h!

.

Since ℓI(b, s; πi) increases in πi and since E[V |b, s, πi] increases in ℓI(b, s; πi) we have

that the expectation E[V |b, s, πi] increases in πi. Since the equilibrium threshold sat-

isfies E[V |b, s, π] = p(b, s) for all b, s, it follows that E[V |b, s, πi] > p(b, s) for all b, s. Thus

E[E[V |b, s, πi]−p(b, s)
∣
∣πi] > 0 for all πi > π. Since π is common knowledge in equilibrium,

any trader with belief πi > π strictly prefers to buy; analogously any trader with πi < π

has E[V |b, s, πi] < p(b, s) for any (b, s). Likewise for the selling case.

B.3 Proof of Proposition 2

As the expectations for bt and st both exist, we write E[NOFt|Ht] = E[bt − st|Ht] =

E[bt|Ht] − E[st|Ht]. Using equation (3),

E[bt|Ht] =
∞∑

b=0

b ·
∞∑

s=0

Pr(bt = b, st = s|Ht)

=
∞∑

b=0

b ·
∞∑

s=0

(
e−ν(β1+σ1)(νβ1)

b(νσ1)
s

b!s!
pt−1 +

e−ν(β0+σ0)(νβ0)
b(νσ0)

s

b!s!
(1 − pt−1)

)

= νβ1pt−1 + νβ0(1 − pt−1).

Likewise, E[st|Ht] = νσ1pt−1 + νσ0(1 − pt−1). With symmetric thresholds, σ1 = β0 and

σ0 = β1, which yield the result.
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B.4 Proof of Proposition 3

We first compute the expected absolute value of the order imbalance IBt = |bt − st|
conditional on the realized number of transactions b + s = Vol. We write more com-

pactly E[IBt|bt + st = Volt, Ht] =: EVol[IBt] and compute

EVol[IBt] =
Vol∑

b=0

|2b − Vol|Pr(bt = b, st = Vol − b|Ht).

Traders’ decisions are independent, conditional on the asset’s true liquidation value, and

thresholds are time-invariant and symmetric. Using Bayes’ Rule, the above is

(B-4) EVol[IBt] =
Vol∑

b=0

|(2b − Vol)|
(
pt−1ρ

b(1 − ρ)Vol−b + (1 − pt−1)ρ
Vol−b(1 − ρ)b

)
(

Vol

b

)

,

where ρ = β1/(β0 + β1). Rearranging, we obtain for Vol = 2k and Vol = 2k + 1

E2k[IBt] =
k∑

b=0

(2k − 2b)
(
ρb(1 − ρ)2k−b + ρ2k−b(1 − ρ)b

)
(

2k

b

)

,(B-5)

E2k+1[IBt] =
k∑

b=0

(2k + 1 − 2b)
(
ρb(1 − ρ)2k+1−b + ρ2k+1−b(1 − ρ)b

)
(

2k + 1

b

)

.(B-6)

Proof of (a): The probability of there being Vol trades at time t is given by

Pr(bt + st = Vol|V = v,Ht)

=
∞∑

N=Vol

Pr(N traders)
Vol∑

b=0

Pr(N − Vol no trades, b buys, Vol − b sales|V = v,Ht)

=
∞∑

N=Vol

νNe−ν

N !

Vol∑

b=0

N ! γv
N−Volβv

bσv
Vol−b

(N − Vol)!b!(Vol − b)!
=

νVol(σv + βv)
Vol

Vol!
e−ν(1−γv)

With symmetric thresholds the unconditional probability is given by

Pr(bt + st = Vol|Ht) =
νVol(β0 + β1)

Vol

Vol!
e−ν(β0+β1).(B-7)

It is independent of the trading history, hence, using (B-5) and (B-6), so is E[IBt|Ht].

Proof of (b): We need to show that E[|b − s||N = 2k + 1] − E[|b − s||N = 2k] > 0. For
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Vol ≥ b ≥ 1 we use
(
2k+1

b

)
=
(
2k
b

)
+
(

2k
b−1

)
and

(
2k+1

0

)
=
(
2k
0

)
= 1 to rewrite (B-6) as

E2k+1[IBt] =
k∑

b=0

(2k + 1 − 2b)
(
ρb(1 − ρ)2k+1−b + ρ2k+1−b(1 − ρ)b

)
(

2k

b

)

+
k−1∑

b=0

(2k − 2b)
(
ρb+1(1 − ρ)2k−b + ρ2k−b(1 − ρ)b+1

)
(

2k

b

)

−
k−1∑

b=0

(
ρb+1(1 − ρ)2k−b + ρ2k−b(1 − ρ)b+1

)
(

2k

b

)

Recognizing that the second sum in the above expression can be rewritten as a sum from 0

to k, and rearranging further, we obtain

E2k+1[IBt] − E2k[IBt] = (ρk(1 − ρ)k+1 + ρk+1(1 − ρ)k)

(
2k

k

)

+(2ρ − 1)
k−1∑

b=0

ρb(1 − ρ)2k−b

((
ρ

1 − ρ

)2k−2b

− 1

)(
2k

b

)

.

Since 1/2 < ρ < 1, this last expression is positive.

B.5 Proof of Proposition 4

We divide the expectation into the sum of two terms, according to the sign of the order

imbalance. To simplify notation, we will assume ν = 1, the proof does not rely on this

assumption. We will first compute

E+[|∆pt||IBt] ≡ E[|∆pt|||bt − st| = IBt, bt − st > 0, Ht] Pr(bt − st > 0||bt − st| = IBt, Ht).

Omitting subscripts on IB, the probability Pr(|bt − st| = IB|Ht) is independent of the

history and is given by

Pr(|bt − st| = IB|Ht) =
∞∑

s=0

(βs
1β

s+IB

0 + βs+IB

1 βs
0)

1

s!(s + IB)!
= B(IB, 2

√

β1β0)
βIB

1 + βIB
0

(
√

β1β0)IB
,

where B(·, ·) is the Bessel function of the first order. When bt > st, the absolute value

of the price change is pt − pt−1. Using the transaction price law of motion, after some

32



algebraic simplification, we obtain

E+[|∆pt||IB] =
1

Pr(|bt − st| = IB|Ht)

∞∑

s=0

(ptβ
s+IB

1 βs
0

−pt(ptβ
s+IB

1 βs
0 + (1 − pt)β

s
1β

s+IB

0 ))
1

s!(s + IB)!

A similar expression can be derived for bt < st. Since pt − pt−1 = 0 when bt = st, the

expected absolute value of the price change is given by E+[|∆pt||IB] + E−[|∆pt||IB] and

can be simplified to

E+[|∆pt||IB] + E−[|∆pt||IB] =
2pt(1 − pt)

∑
∞

s=0(β
s+IB

1 βs
0 − βs

1β
s+IB

0 ) 1
s!(s+IB)!

Pr(|bt − st| = IB|Ht)

= 2pt(1 − pt)
βIB

1 − βIB
0

βIB
1 + βIB

0

= 2pt(1 − pt)
(β1/β0)

IB − 1

β1/β0)IB + 1
.

Since β1/β0 > 1, the above expression increases in IB.

B.6 Proof of Proposition 5

We first compute the expected absolute value of the price change conditional on the

realized number of transactions b + s = Vol; we use ∆pt(·) to express how the price

change depends on order imbalance IB.

EVol[|∆pt|] =
Vol∑

b=0

|∆pt(2b − Vol)|Pr(bt = b, st = Vol − b|Ht).

Traders’ decisions are independent, conditional on the asset’s true liquidation value, and

thresholds are time-invariant and symmetric. Using Bayes’ Rule,

EVol[|∆pt|] =
Vol∑

b=0

|∆pt(2b − Vol)|
(
pt−1ρ

b(1 − ρ)Vol−b + (1 − pt−1)ρ
Vol−b(1 − ρ)b

)
(

Vol

b

)

.

Using Vol = 2k and Vol = 2k + 1, we need to show that E2k+1[|∆pt|] − E2k[|∆pt|] > 0.

This is true for k = 0, and so in what follows we assume k ≥ 1. Rewrite E2k+1[|∆pt|] as

k∑

b=0

|∆pt(2b − 2k − 1)|
(
ptρ

b(1 − ρ)2k+1−b +(1 − pt)ρ
2k+1−b(1 − ρ)b

)
(

2k + 1

b

)

+
2k+1∑

b=k+1

|∆pt(2b − 2k − 1)|
(
ptρ

b(1 − ρ)2k+1−b + (1 − pt)ρ
2k+1−b(1 − ρ)b

)
(

2k + 1

b

)

.

33



The second sum can be expressed as a sum where s runs from 0 to k, with s = 2k +

1 − b. Since b and s are the numbers of buys and sales respectively,
∑k

s=0 =
∑

bt>st
and

E2k+1[|∆pt|] can be written as

E2k+1[|∆pt|] =
∑

bt<st

(·) +
∑

bt>st

(·) ≡ E−

2k+1[|∆pt|] + E+
2k+1[|∆pt|],

where E−

2k+1[|∆pt|] denotes the sum over negative net order flows, bt < st, and E+
2k+1[|∆pt|]

denotes the sum over positive net order flows, bt > st.

Likewise, using |∆pt(0)| = 0, we can write E2k[|∆pt|] = E−

2k[|∆pt|] + E+
2k[|∆pt|]. We

then regroup the sums according to the sign of the net order flow and show that

E+
2k+1[|∆pt|] − E+

2k[|∆pt|] = |∆pt(1)|(pt−1ρ(1 − ρ)k + (1 − pt−1)ρ
k(1 − ρ))

(
2k

k

)

E−

2k+1[|∆pt|] − E−

2k[|∆pt|] = |∆pt(−1)|(pt−1ρ
k(1 − ρ) + (1 − pt−1)ρ(1 − ρ)k)

(
2k

k

)

We start with the sums over the negative net order flow. Using
(
2k+1

b

)
=
(
2k
b

)
+
(

2k
b−1

)
, and

(
2k+1

0

)
=
(
2k
0

)
= 1, we rewrite E−

2k+1[|∆pt|] as

k∑

b=0

|∆pt(2b − 2k − 1)|
(
pt−1ρ

b(1 − ρ)2k+1−b + (1 − pt−1)ρ
2k+1−b(1 − ρ)b

)
(

2k

b

)

+
k−1∑

b=0

|∆pt(2b − 2k + 1)|
(
pt−1ρ

b+1(1 − ρ)2k−b + (1 − pt−1)ρ
2k−b(1 − ρ)b+1

)
(

2k

b

)

An analogous expression obtains for E−

2k[|∆pt|]. Explicitly writing out |∆pt| using equation

(12) and noting that ρ/(1 − ρ) = β1/β0, we obtain for all 0 ≤ b ≤ k − 1:

|∆pt(2b − 2k + 1)| − |∆pt(2b − 2k)|)
(
pt−1ρ

b+1(1 − ρ)2k−b + (1 − pt−1)ρ
2k−b(1 − ρ)b+1

)

= (|∆pt(2b − 2k)| − |∆pt(2b − 2k − 1)|)
(
pt−1ρ

b(1 − ρ)2k+1−b + (1 − pt−1)ρ
2k+1−b(1 − ρ)b

)

Hence, subtracting the sums, E−

2k+1[|∆pt|] − E−

2k[|∆pt|], all terms for b < k cancel and the

only remaining term is the one for b = k of E+
2k+1[|∆pt|]. This term is positive as all the

arguments are non-negative and some are strictly positive. The sums over the positive

net order flows, E+
2k[|∆pt|] and E+

2k+1[|∆pt|] can be rewritten analogously.
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B.7 Proof of Proposition 7

The probability of there being Vol trades at time t is independent of the history and is

given by equation (B-7). The expected trading volume is thus E[bt + st|Ht] = ν(β0 + β1).

Further, the family of distributions of bt + st|Ht increases in ν in the sense of the first

order stochastic dominance. To see this, observe that

d

dx

k∑

Vol=0

xVol

Vol!
e−x = −xke−x

k!
< 0,

where the equality follows by exchanging the order of summation and differentiation.

Propositions 3 and 5 imply that the conditional expectations of the absolute values of the

order imbalance and price changes increase in realized volume. An increase in ν leads

to a first order stochastic dominance shift in the distribution of volume, which in turns

implies an increase in E[|bt − st||Ht] and E[|∆pt||Ht]. Duration D(ν, γ1) decreases because

e−ν(1−γ1) = x decreases in ν and ∂
∂x

x
(1−x)2

> 0. �

B.8 Proof of Proposition 8

(a) From the proof of the existence theorem we know that π = π solves

(B-8)
2π − 1

4

µ + 1

µ
=

∫ π

0

G(s|θ) ds,

with the left-hand side intersecting the right-hand side from below at π > 1/2. Take

θ̃ ≥ θ. From Appendix A, if the quality distribution G̃(·|θ) on [1/2, 1] increases in θ in

the sense first order stochastic dominance, then

∫ π

0

G(s|θ) ds ≤
∫ π

0

G(s|θ̃) ds.

Since the left-hand side and the right-hand side of (B-8) are strictly monotonic in π, their

intersection for θ is to the left of their intersection for θ̃.

(b) Equation (11) can be rewritten as (1 − π(θ))/π(θ) = β0(π(θ))/β1(π(θ)). By part (a),

π(θ) increases in θ, and thus β0(π(θ))/β1(π(θ)) decreases.

B.9 Proof of Proposition 9

(i) Expected volume increases. Expected volume is given by ν(β1 +β0). From the proof

of the existence theorem, β1(θ) + β0(θ) = 1 + µ − 2µG(π|θ). Thus we need to show that

G(π(θ̃)|θ̃) < G(π(θ)|θ) for θ < θ̃. Let θ̃ = θ +∆θ with ∆θ small. We use subscripts θ and
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π for partial derivatives. A first order Taylor approximation of G yields

G(π(θ + ∆θ), θ + ∆θ) = G(π(θ), θ) + Gθ(π(θ), θ)∆θ + Gπ(π(θ), θ)π′(θ)∆θ.

We thus have to show that

(B-9) Gθ(π(θ), θ) + Gπ(π(θ), θ) · π′(θ) < 0.

By Appendix A, when the quality distribution G̃(·|θ) on [1/2, 1] increases in θ in the

sense first order stochastic dominance, then it holds that Gθ < 0 for π > 1/2. Yet Gπ =

g(·|θ) ≥ 0 (for it is a density) and π′ > 0 (by Proposition 8).

The change in the threshold, π′(θ), is obtained from the equilibrium condition. From

the proof of the existence theorem we know that the equilibrium π(θ) solves

(B-10) (2π(θ) − 1)/4 × (1 + µ)/µ =

∫ π(θ)

0

G(s|θ)ds ≡ Ψ(π(θ), θ).

Since (B-10) holds for all θ as an identity, we can differentiate it with respect to θ to

obtain

π′(θ) =
Ψθ(π(θ), θ)

1+µ
2µ

− Ψπ(π(θ), θ)
.

Substituting all this back into the LHS of (B-9) yields

Gθ(π(θ), θ) + Gπ(π(θ), θ)
Ψθ(π(θ), θ)

1+µ
2µ

− Ψπ(π(θ), θ)
< 0.

The size of the last term depends on µ and we will now eliminate it to establish a relation

that only depends on the primitive quality distribution. Reformulating (B-10),

1 + µ

2µ
=

2Ψ(π(θ), θ)

2π(θ) − 1
.

Substituting back into the LHS of (B-9) and expressing it in terms of Ψ yields

Ψπ,θ(π(θ), θ) + Ψπ,π(π(θ), θ)
(2π(θ) − 1)Ψθ(π(θ), θ)

2Ψθ(π(θ), θ) − (2π(θ) − 1)Ψπ(π(θ), θ)
< 0.

As the denominator of the second term is positive, the above is equivalent to (⋆).

(ii) The expected order imbalance increases.

Claim (I): Given condition (⋆), the distribution of volume increases in θ the sense of

first order stochastic dominance.
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Claim (II): The distribution of the order imbalance conditional on volume increases

in θ in the sense of of first order stochastic dominance.

Using these claims, the proof obtains as follows. By Proposition 3, E[IB|bt + st = Vol, θ]

increases in Vol. Let θh > θl. Then

E[IB|θh] =
∞∑

Vol=0

E[IB|bt + st = Vol, θh]Pr(Vol|θh)

≥
∞∑

Vol=0

E[IB|bt + st = Vol, θl]Pr(Vol|θh)

≥
∞∑

Vol=0

E[IB|bt + st = Vol, θl]Pr(Vol|θl) = E[IB|θl].

The first inequality follows from Claim (I), and the second from Claim (II).

Proof of Claim (I): Define α(θ) := ν(β1 + β0). By Proposition 8, α′(θ) > 0. Using

equation (B-7), the cumulative distribution of volume is

Pr(Vol ≤ k) = e−α

(

1 + α +
1

2
α2 + . . . +

1

k!
αk

)

.

The first order effect of a change in θ on this cdf is

∂

∂θ
Pr(Vol ≤ k) = − 1

k!
e−ααkα′(θ) < 0.

Since Pr(Vol ≤ k) ց in θ for all k, we have FOSD.

Proof of Claim (II): Consider function ρ = β1/(β1 + β0) as defined in the proof of

Proposition 3. By Proposition 8, ρ′(θ) > 0. Now suppose that Vol = 2k, i.e. volume is

even (the case for odd volume, Vol = 2k + 1 is analogous). To prove that for fixed Vol,

the distribution of the order imbalance satisfies FOSD, we need to show that

Pr(IB ≤ 2i|Vol = 2k) ց in θ for all 0 ≤ i < k.

The relevant probabilities for the order imbalance have been derived in the proof of

Proposition 3. Suppose that i = 0. Then Pr(IB = 0|Vol = 2k) = ρk(1 − ρ)k (2k)!
k!k!

.

Since ρ′(θ) > 0 and ρ ≥ 1/2, the derivative of the above is negative:

∂

∂ρ
ρk(1 − ρ)k (2k)!

k!k!
=

(2k)!

k!k!
· kρk−1(1 − ρ)k−1 (1 − 2ρ) < 0.
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Next, consider the case with 0 < i < k:

Pr(IB ≤ 2i|Vol=2k)=ρk(1−ρ)k (2k)!

k!k!
+

i∑

j=1

(
ρk+j(1−ρ)k−j + ρk−j(1−ρ)k+j

) (2k)!

(k+j)!(k−j)!
.

Computing the derivative and rearranging, we obtain

∂

∂ρ
Pr(IB ≤ 2i|Vol = 2k) =

(2k)!

(k + i)!(k − i − 1)!
ρk−i−1(1 − ρ)k+i

(

1 −
(

ρ

1 − ρ

)2i+1
)

< 0,

where the last step follows as ρ > 1/2. Finally observe that Pr(IB ≤ 2i|Vol = 2k) = 1

for i = k. Thus Pr(IB ≤ 2i|Vol = 2k) ց in ρ and since ρ ց in θ, we have that

Pr(IB ≤ 2i|Vol = 2k) increases in θ in the sense of first order stochastic dominance.

(iii) The expected price variability increases. As the proof of Proposition 5 shows,

the expected price variability, E[|∆pt||θ] employs the same probabilities as the expected

order imbalance, E[IB|θ] for fixed volume. As the distribution of volume satisfies FOSD,

the result is analogous to part (ii).

(iv) Duration decreases. As βv + σv + γv = 1, when βv + σv increases γv decreases.

B.10 Proof of Proposition 10 (Noise Trading)

(a) As µ increases, the left-hand side of (B-3), which implicitly defines π, shifts to the

right and thus the root π shifts to the right, too.

(b) As argued in the Proof of Proposition 7, expected trading volume is proportional to

β1 + β0. Using Step 2(i) of the proof of the existence theorem,

β1 + β0 = 1 + µ − 2µG(π) = 1 + µ (1 − 2G(π))
︸ ︷︷ ︸

<0 as G(π)>1/2

.

Since π increases in µ, d/(dµ)G(π(µ)) > 0. Thus d/(dµ)(β1(µ) + β0(µ)) < 0 and trading

volume declines.

(c) As in Step (iv) in the proof of Proposition 9, duration increases.
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Result Variable Shift Observable Reaction
Existing evidence or suggested

empirical proxies for unobservables

Corollary 1 net order flow ր price ր
Jones, Kaul, and Lipson (1994),
Brown, Walsh, and Yuen (1997),
Chordia, Roll, and Subrahmanyam (2002)

Proposition 2 past net order flow > 0 average future net order flow > 0
Hasbrouck and Ho (1987),
Chordia, Roll, and Subrahmanyam (2002)

Proposition 3 (a) past order imbalances ր future order imbalances independent N/A

Proposition 3 (b) volume ր order imbalance ր Chordia, Roll, and Subrahmanyam (2002),
Chan and Fong (2000)

Proposition 4 order imbalance ր average absolute price change ր Chordia, Roll, and Subrahmanyam (2002),
Chan and Fong (2000)

Proposition 5 volume ր average absolute price change ր
Chordia, Roll, and Subrahmanyam (2002),
Chan and Fong (2000),
Gallant, Rossi, and Tauchen (1992)

Proposition 7 entry rate ր
average volume ր
average order imbalance ր
average price changes ր
duration ց

causes for changes in entry rate:
index inclusion, international market opening
financial deregulation, cross-listing

Propositions 8 & 9 information quality ր

price impact ր
average volume ր
average order imbalance ր
average price changes ր
duration ց

Chordia, Roll, and Subrahmanyam (2008),
causes for changes in information quality:
new disclosure rules, changes in analyst
coverage, changes in information technology,
changes in ownership structure (hedge funds
rather than mutual funds), development
of a new analysis tool, improvements in
analysts’ earnings forecasts

Proposition 10 informed trading ր
average volume ց
duration ր
(numerically) price changes ր

causes for changes in the proportion of
informed trading: changes in ownership
structure (hedge funds rather than retail),
market changes that trigger more retail
participation or day trading

Table 1: Empirical Predictions of the Model
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