A Prosodic Analysis of Stress-retraction (*Nesiga*) in Tiberian Hebrew: Prosodic Structure and Optimality-theoretic Constraints

Oddballs: Proof of Concept

§A. Long clitic-groups

§B. Participles ending in a vowel

§C. Pseudo-stress-retraction (Revell ch. 8)

Vincent DeCaen & Elan Dresher

Linguistics Dept, University of Toronto

NOTES (August 2009)

“Oddballs” belong in sub-datasets characterized by extreme and/or unique prosodic features. These datasets appear to be rule-governed to a large extent, but (a) there is a large number of failures of stress-retraction, yet (b) there still is enough variation to suggest that important secondary principles are at work that are relevant for the larger study.

PRINCIPLES OBSERVED:

(a) *poetic vs prose accent systems differ* in treatment of longer structures

(b) *syntactic structures differentiated*

(c) *specific accents conditioning* (i) licensing structure, (ii) blocking external gemination [versus general classes or ranks of accents]

1 Acknowledgements: esp. Kirk Lowery, Jim Price, John Hobbins, ... et al.
§A. Long clitic-groups

1. There is a total of 37 verbs that are (a) long-words, specifically tri-syllabic and trimoraic; and that are (b) combined with a clitic (c) in a stress-retraction environment.

2. There is a prosodic distinction among these 37 three-word groupings, predictable from the syntactic class of clitic:
 (a) Neg forces the left-recursive structure in (1); whereas
 (b) Comp is “outside” in the right-recursive “legarmeh” structure in (2).

There is one minimal pair (on D1 zaqef): Ezek 33:12 (1) versus Deut 7:25 (2).

2.1 There are 12 cases involving Comp: presumably with the structure in (2), and so excluded from further consideration here. Consequently, only the remaining 25 cases with Neg (lo, al, bal) can be considered true clitic-groups with the structure in (1).

2.11 Of these 25, there are only 6 occurrences of stress-retraction (24%).

2.111 Stress-retraction occurs in 3 of 3 (100%) with poetic accents (only in Proverbs), and specifically, only before the major disjunctives silluq (2x: Prov 14:10, 19:23) and athnach (1x: Prov 29:19). (These three clitic-groups are all on virtual legarmeh.)

2.112 Stress-retraction occurs in only 3 of 22 (14%) with prose accents (Josh 17:16, Ezek 33:12, 37:22). These 26 cases are widely distributed over the disjunctive ranks, with a very strong tendency to appear before the minor disjunctives (D1f, D2f, D3f).

2.12 EXPLANATION:

(a) As a first approximation, the poetic accent system is treating the clitic-group as a prosodic word (ω) as expected in (1), and since there is no barrier to stress-retraction caused by ALIGNXP, stress-retraction obtains; whereas

(b) the length distinction, which plays a decisive role in the prose accent system, is forcing the parsing of the clitic-group as a phonological phrase (φ). In other words, the clitic-group appears on a virtual disjunctive in the prose accent system, and therefore stress-retraction fails.

\[{\text{LO}}^{\text{−}} \text{−} \text{YIK.F}^{\text{−}} \text{SEL} \] (Ezek 33:12) \[{\text{P.E}}^{\text{+}} \text{N T.IW.FQ}^{\text{−}} \text{−} \text{−} \text{−} \] (Deut 7:25)
2.121 There are three exceptions.

2.1211 Two exceptions appear uniquely in certain prosodico-accentual environments. These environments are licensing environments for the long clitic-group; the prosodic structure is actually that in (1).

(a) \textbf{W:LO^\textdegree)} Y^XF^\textdegree CW. (Ezek 37:22)

... D1 (pausal zaqef) C (azla) C (mereka) D2f (tevir) ...

The additional conjunctive \textit{azla} on the Neg \textit{lo} would also be explained in terms of licensing in this environment after zaqef.

By contrast, such is not the case at the beginning of a verse, where the Neg \textit{lo} receives maqqef (2x: Gen 17:5, \textdegree Is 32:5); the beginning of the verse would not be a licensing environment.

(b) \textbf{LO^\textdegree)-YIK.F^\textdegree SEL} (Ezek 33:12)

... D2f (pashta) C (munach) D1 (nonpausal zaqef) ...

An additional conjunctive on the Neg \textit{lo} is not available with D1 zaqef.\textdegree

By contrast, stress-retraction fails at the beginning of the verse (1x: Deut 2:5); the beginning of the verse would not be a licensing environment.

2.1212 There is then only one true exception. \textbf{W:LO^\textdegree)-YIM.F^\textdegree C^\textdegree)} (Josh 17:16)

2.12121 This one exception is likely a mistake, consistent with the general principles set forth in the prefatory comments. The exception is

(a) a lone outlier;
(b) the environment in which it is found is a highly marked prosodic environment in which stress-retraction fails; yet
(c) stress-retraction still obtains, patterning with the unmarked majority; furthermore,
(d) the vocabulary item is relatively high frequency, and so is found with stress-retraction elsewhere:

\textbf{YIM.F^\textdegree C^\textdegree)} (Is 51:3, 1C 28:9);
near homophone \textbf{YIM.F^\textdegree L^\textdegree)} (2K 3:17, Jer 13:12 bis, Ps 71:8).

2.1213 There is one glaring unexpected case of stress-retraction with the Comp \textit{im}: \textbf{JIM-YIW.F^\textdegree L^\textdegree D} (Is 66:8, sic A). This should probably be considered a mistake in the model codex; this was probably an instance of the failure of stress-retraction. Under stress-retraction, the vowel must be \textit{seghol} not \textit{tzere} in the unstressed syllable of the \textit{niphal} generally (cf. Job 3:3 \textit{JW.F^\textdegree LED\textdegree}). Possibly, the expected \textit{mereka} on the final syllable was misread as \textit{metheg-ultima},\textdegree and the \textit{mereka} was secondarily applied to \textit{qametz} (see 2.12121 (a)-(c)).

3 The Neg \textit{lo} is missing an expected \textit{metheg} here.
4 The additional conjunctive would be predicted to be \textit{munach}. Such an additional \textit{munach} actually obtains in L five times, probably incorrectly (?): see further Price (1990: n. 10, p. 63).
6 Both \textit{mereka} and \textit{metheg} are indicated with a simple vertical stroke in mss, and can be hard to distinguish, esp. in A (cf. Revell 1987: #1.6, p. 11, and his n. 7). This confusion with \textit{metheg} extends to \textit{tipcha}, \textit{tarcha} and \textit{dechi}.
§B. Participles ending in a vowel

1. In light of the main study, the following must be true of the (non-finite) participles:
 (a) where the form ends in a vowel, stress-retraction should obtain;
 (b) where the form ends in a consonant, stress-retraction should obtain where the
 form is morphologically *bound*;
 (c) whereas, stress-retraction should not obtain where the form is morphologically
 free;
 (d) however, constraints may in fact trump (a)-(c).

2. Consider the following threefold contrast.

2.1 BOUND
SYNTAX: the syntactic structure in (1) represents a case-marked constituent; the implied
(semantic) subject is necessarily 3ms; the participle assigns *accusative* case to its NP
object; and typically there is only one overt argument.
MORPHOLOGY: the participle is morphologically *bound*; and the mpl form ends in –ê.

(1) PrtP
 |
 Prt'
 |
 Prt NP_{object}

2.2 QUASI-BOUND
SYNTAX: the syntactic structure in (2) represents a case-marked constituent; the implied
(semantic) subject is necessarily 3ms; the participle assigns *oblique* case (if any); and
typically there is only one overt argument.
MORPHOLOGY: the participle is morphologically *free*; but N.B. the mpl form ends in –ê.

(2) PrtP
 |
 Prt' XP
 |
 Prt

2.3 HEAD MOVEMENT
SYNTAX: the syntactic structure in (3) represents a participle that raises to a governing
head X: e.g., TENSE (T) or DEFINITE (D). Case assignment in situ is irrelevant;
frequently there is more than one overt argument present; in the absence of an overt
subject, it is assumed that there is an *empty NP* (3ms “little pro” pro) in spec-PrtP.
MORPHOLOGY: the participle is necessarily morphologically free; and, crucially, the mpl form ends in –im.\(^7\)

(3) \[
\begin{array}{c}
\text{XP} \\
\text{X'} \\
\text{X} \quad \text{PrtP} \\
\text{X} \quad \text{Prt_i} \\
\text{Prt'} \\
t_i \ldots
\end{array}
\]

3. Final-weak 3ms\(^8\) participles explicitly distinguish morphologically free forms (seghol-heh) versus morphologically bound forms (tzere-heh). In this dataset there are 55 tokens of such participles.

3.1 All and only those forms ending in tzere-heh are morphologically bound. These forms must therefore conform to 2.1 in all respects. There are 18 participles ending in tzere-heh.\(^9\)

3.11 By 2.1, these 18 participles must be bound to their direct objects as in (1). There are two (apparent) exceptions where there is no following direct object.

(a) K.\(FL-RO\)^H BF^M \(\text{Ps 64:9} \) PP

This form is clearly not an exception upon closer inspection. This form is mpl, and so is a type of Q/K. The Q/K plural reading is confirmed by the masora parva,\(^10\) the versions and many mss. (As a mpl form, it conforms to 1(a).)

(b) (O&^^H H^N.FH \(\text{1K 20:40} \) AdvP

This is a false friend. The glottal + tzere of the following syllable secondarily and independently condition the tzere in the participle here. Consequently, all such forms are ambiguous (4x: 1K 20:40, Jer 10:12, 51:15, Ezek 17:15).

RULE: where stress-retraction fails, \([\varepsilon:] \rightarrow [e:] / \# \text{glottal}

\(^7\) N.B. there is no mpl participle ending in –é that also bears the definite article; or that must be read uncontroversially as the verbal predicate.

\(^8\) The 2 tokens of the 3fs participle of the final-weak root (&H are accordingly excluded here, but they are certainly rule-governed: (O&\&FH \(\text{Ps 118:15 & 16} \). Tokens of final-aleph roots are as excluded on principle (there appear, in fact, to pattern with /CVCVC/ participles).

N.B. Hos 6:3 is a hiphil nonpast, not a qal participle (contra Revell 1987 who classes this token with the participles in his 5.2).

\(^10\) mp: twice, once spelled with heh, once spelled with yod: Ps 64:9, Est 1:14.
3.12 These 18 participles must also undergo stress-retraction by 1(a). However, there are 6 cases where stress-retraction fails.

(a) Stress-retraction fails in 5 cases in the same **prosodico-accentual environment**. In these 5 cases, the regular conjunctive would by rule be converted to *munach* before the **D2f** under stress-retraction; the five pairs also follow major disjunctives.

- D2 < D2f *tevir* 1K 20:40 (but see 3.11(b))
- D2 < D2f *pashta* Gen 47:3
- D1 < D2f *pashta* Amos 4:13
- D0 < D2f *pashta* Jer 10:12, 51:15

(b) The sixth case has an additional moraic syllable: the prefixed **definite article** (Ezek 17:15).

- **N.B.** Stress-retraction fails in the presence of the definite article, regardless of other contextual factors (6x): *Ex 31:14, 35:2, Josh 15:2, 2S 12:5, Ezek 17:15, Amos 4:13.*

- **CONJECTURE:** these are instances of head movement (Prt to D), conforming to 2.3.

- Therefore, Ezek 17:15 must also be a false friend, conditioned by the following glottal + *heh* (3.11(b)).

3.121 The following two environments are **blocking environments**:

(a) **accentual (primarily pashta D2f):**

(b) **morphosyntactic (definite article, head movement).**

3.2 All 32 remaining tokens must

- show stress-retraction by 1(a); and
- induce external gemination (so-called conjunctive *dagesh* on the following word of the pair)

3.21 There are 10 cases where nesiga fails as does external gemination. These tokens are confined to three **prose** accents, and distributed as follows:

- **D2f *tevir* and *pashta*** (3x): Jer 10:20, Hos 12:2, Ecc 8:12
- **D1f *tipcha*** (4x): Ex 18:5, Deut 29:17, Is 10:14, Hab 2:12
- **D1 *zaqef*** (3x): Deut 24:11, 32:50, Is 44:20

3.211 The three prose accents constitute **blocking environments** (see 3.121(a)).

3.2111 **(D2f):** Where the surface form of the participle is *[CV:CV:]*, stress-retraction fails (including, crucially, Hos 12:2, Ecc 8:12, both with a following /r/); whereas, where the surface form of the participle is *[CV:CVC]* by external gemination, stress-retraction obtains. Constraint: respect external gemination; and align stress with open *[CV:].*

- **actual gemination:** *(O^&EH P.:RI^Y (Gen 1:11)*
- **virtual gemination** with *heth* (3x): *(O^&EH XE^SED (Jer 9:23, 32:18), W:(O^&EH XE^SED (Deut 5:10); see further examples of virtual gemination (5x more), with

11 N.B. these and only these three accents are **independently identified** as blocking environments by study of the so-called perfect consecutives (treated separately in Revell 1987: ch. 8).

12 N.B. the exceptional stress pattern of the two hollow-root 3fs perfect consecutives identified by Revell (1987: #1.14, p. 14, Ezek 30:4, Hos 11:6) are subsumed by this generalization on word shape [CVCV:CV:]; both *mereka + pashta.*
heth, \textit{W:(O^&EH XE^SED} (Ps 18:51), \textit{(O^&EH XF^YIL} (Num 24:18); with ayin, \textit{(O^&EH O^&SER} (Jer 17:11); and with aleph, \textit{(O^&EH)^&PER} (Is 44:20), \textit{T.O^&LEH E^REC} (Job 26:7).

3.2112 (D1f):
- \textbf{D2f tevir < D1f}: follows 3.2111: gemination and stress-retraction \textit{W:(O^&EH} (Jer 33:18) versus no gemination and failure of stress-retraction \textit{B.ONE^H} (Hab 2:12 before ayin). Constraint: respect external gemination; and align stress with open [CV:].
- \textbf{D2f pashta < D1f}: no gemination and failure of stress-retraction: \textit{XONE^H} (Ex 18:5), \textit{P.ORE^H} (Deut 29:17).
- \textbf{D1 zaqef < D1f}: no gemination and failure of stress-retraction: \textit{W.POCE^H} (Is 10:14); exceptional stress-retraction obtains following an exceptional \textit{major pausal} form \textit{(O^&EH} (Jer 17:11).

3.21121 In the latter two cases (D2f \textit{pashta} and D1 \textit{zaqef}), the preceding accents are (a) \textit{supralinear} (versus sublinear \textit{tevir}) and, crucially, (b) block both stress retraction \textit{and} external gemination.

\textbf{N.B.} In other words, these prosodico-accentual environments do not even respect external gemination (see n. 6).

3.2113 (D1): both stress-retraction and gemination fail:
- \textbf{twice in the structure in (2) above} (\textit{NO&E^H} Deut 24:11, \textit{OLE^H} Deut 32:50); elsewhere, both obtain (\textit{B.O^NEH} Gen 4:17, \textit{(O^&EH} Is 44:24)
- \textbf{at the absolute beginning of the verse} (\textit{(O^&EH} Is 44:20)

\textbf{N.B.} In other words, these prosodico-accentual environments do not even respect external gemination (see n. 6).

3.212 EXPLANATION:

3.2121 Stress-retraction is not always cost-free; the secondary triggering of \textit{external gemination} is not a preferred outcome, especially before certain accents (prose D1, D1f and D2f).

\textbf{Constraints:} \textbf{*ExtGem >> *Clash}

3.2122 Stress-retraction nevertheless obtains where the \textit{grammatical contrast} between (1) and (3) is at stake; where the grammatical contrast is not at stake (as in (2)), or where the contrast is independently marked (as with the definite article, see 3.12(b)), stress-retraction fails.

\textbf{Constraints:} \textbf{GramCon >> *ExtGem >> *Clash}

3.2123 \textbf{N.B.} The constraint \textit{*Clash} is only ever violated where the stress-retraction candidate ends in an \textit{open syllable} [CVV]. This open syllable is capable of being indefinitely prolonged; and so we could imagine that this open syllable is carrying an extra beat.

\textbf{Conjecture:} ultimately, there is \textit{no stress-clash} in such apparent cases of stress-clash; the stress-clash is actually resolved \textit{with an extra mora/beat} assigned to the \textit{open syllable}.

3.3 Since the structure in (1) is systematically distinguished from (3), the syntactic frames must also differ systematically. The structure in (1) is the marked structure.

3.31 Forms with tzere-heh that *ex hypothesi* have the structure in (1) all *function as NPs*.

3.311 The PrtP is directly governed by a nonverbal head X, and is necessarily assigned *accusative case* (8x); in turn, the participle assigns *accusative case* to its own object.\(^{13}\)

3.312 The PrtP is a set phrase, therefore a *lexeme* (4x), functioning as NP.

3.3121 \(RO(\"H \ COP)N\) “shepherd” (Gen 4:2, 47:3; see also Gen 46:34 with *kol*).

3.3122 \(O\&"H \ PELE\) “wonder-worker” (Ex 15:11, Ps 77:15).

3.3123 \(W:\ RO^M"H \ QE^YET\) “archer” (Jer 4:29) should be considered a lexeme as well.

3.313 \(O\&"H \ SA^XAR\ (“YPF^H\) (Amos 4:13) is a member of an extended, conjoined NP *casus pendens* resumed by the 3ms genitive pronoun.

3.314 The phrase \(O\&"H \ E^REC\) (Jer 10:12, 51:15) with the glottal *aleph* in the environment of D2f *pashta* is a false friend (together with 1K 20:40 (3.11(b)) and Ezek 17:15 (3.12(b))).

3.32 *Ex hypothesi* the other structures have the syntactic structure in (3):

4. All other participles ending in a vowel are expected to show stress-retraction. In this dataset there are a further \(132\) such tokens and only \(6\) exceptions (95%).

4.1 There are two irregular forms of the fs participle ending in \(\dot{a}\): Is 40:10, Lam 1:16.

4.1 There are 6 exceptions among the 130 mpl participles ending in \(\dot{e}\):

4.11 (2x) Before minor D3f, where the longer form \(W:\ ET-YOS:\ B^{**Y}\) with *five syllables* has triggered *secondary (musical) metheg* (Josh 17:11 [virtual D3f], Jud 1:27).\(^{14}\)

4.12 (2x) Where trimoraic forms have the distinctive shape [CVCCV:CV:] before *prose blocking disjunctives* (see 3.2111):
(a) before D2f *pashta*: \(MAG.IY(\"^Y\) (Is 5:8)
(b) before D1f *tipcha*: \(W.L:\$FB^{**Y}\) (Is 59:20)

4.13 (1x) Before D1 *zaqef* and following D1 *zaqef*: Mic 7:17.

4.14 (1x) The syncopating form has *medial yod*: \(JOY:B^{**Y}\) (Mic 7:6; this is the only token in this set of 130).

\(^{13}\) Prt does not take a direct object in Pr 20:1; and doubly blocked by the definite article in two further cases, Ex 31:14, 35:2.

\(^{14}\) Tokens with five syllables where stress-retraction obtains with other accents (7x): Ezek 32:15, 32:29, Nah 1:5, Hab 2:8, 2:17, Ps 148:11, Pr 12:20.
§C. Pseudo-stress-retraction (see Revell 1987: ch. 8)

1. The constraints GramCon >> *ExtGem >> *Clash jointly predict systematic failures of stress-retraction elsewhere with certain prose accents (D1, D1f, D2f) where external gemination is also an issue. Such appears to be the case with what will be called here “pseudo-stress-retraction”: a failure of contextual (versus pausal) phonology, specifically, a failure of expected contextual stress-shifting to the final suffixes of the so-called perfect consecutives that would otherwise result in the violation of the constraint *Clash.

1.1 Setting aside 7 cases involving five or more syllables (extra long words), there are 73 tokens of perfect consecutives that ought to undergo contextual stress-shifting, all things being equal.

2. It follows that (a) the 1s perfect consecutive ending in –tî should always fail to shift (pseudo-stress-retraction should always obtain), thereby avoiding *Clash; whereas, (b) in the case of the 2ms perfect consecutive ending in –tā, where external gemination would result if stress is not shifted (as expected), contextual stress-shifting should obtain (pseudo-stress-retraction should fail) where certain prose accents are involved.

2.1 The distribution of pseudo-stress-retraction by person and accentual environment is summarized in the following table. Once again, pashta (D2f), tipcha (D1f) and zaqef (D1) are singled out (see study of final-weak participles).

<table>
<thead>
<tr>
<th>DISJUNCTIVE BEFORE</th>
<th>DISJUNCTIVE AFTER</th>
<th>1s</th>
<th>2ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>D3f</td>
<td>VD3f</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D0f</td>
<td>VD3f</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>VD3f</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D0f</td>
<td>D3f</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D2f tevir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0f</td>
<td>D2f tevir</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>D2f tevir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>D2f pashta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1 segholta</td>
<td>D2f pashta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D2f pashta</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D0f</td>
<td>D2f pashta</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>D2f pashta</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D0f</td>
<td>D2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>D2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1f</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>D0f</td>
<td>D1f</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>D1f</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>D2f</td>
<td>D1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>D1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D0f</td>
<td>D1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D0</td>
<td>D1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>D1f</td>
<td>D0f</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>D1f</td>
<td>D0</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
2.11 The complexities involved with the D3fs and VD3fs, as well as non-pashta D2fs, are best left to the larger study.

2.12 The two major exceptions are themselves prosodically exceptional:
(a) **W:QFRF^)TF** (Jer 7:2, sic A) unique in the dataset for its root ending in aleph; the surface-open syllable is probably playing a role in attracting stress.
(b) **W:NO(AD:T.I)^Y** (Ex 29:43) perhaps there is an additional euphonic shwa between the dental stops that is disturbing the prosodic structure; and no doubt there is additional pressure from the expected contextual stress-shifting.

3. The exceptionally longer words (5 syllables) do not exhibit any specific behaviour.
(a) **WAH:AR*MOTF^** (Num 31:28) expectation unclear with D3f [awaiting larger study].
(b) 3x hiphil NWX, all retracting with 1s generally: **WAH:ANIXO^TIY** (Ex 33:14), **WAH:ANIYXO^TIY** (2S 7:11), **WAH:ANIXO^WTIY** (1C 22:9, plene yod A).
(c) 2x hiphil QWM, failing to retract versus (b): **WAH:AQIMOWTI^Y** (Ezek 16:60, plene yod A), **WAH:AQIYMOTI^Y** (1S 2:35).
(d) anaptyxis caused by initial-guttural root may be disturbing prosodic structure; retraction otherwise unexpected (N.B. external gemination obtains): **W:HE^X:EZA^Q:T.F** (Lev 25:35)

3.1 It does seem odd that the contrast between 3(b) and 3(c) appears to be strictly lexical.

4. Perfect consecutive 2mpl (16x):
4.1 Where the weak root is *yod-final*, stress-retraction obtains exceptionally in 10 of 11 tokens (fails 1S 11:10, sic A; see next 4.2).¹⁵
4.2 Elsewhere stress-retraction fails as otherwise expected.

¹⁵ In this particular case, *dagesh* appears incorrectly in L in the following *lamed* (sic BHS): the mistake is corrected in BHL, cf. A.