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Abstract. We provide a welfare analysis of the deadline effect in a repeated negotiation

game in which costly delay can produce information that improves the quality of the

decision. We characterize equilibrium strategies and the evolution of beliefs in continuous

time, and study how the length of the negotiation horizon affects players’ behavior and

welfare. The optimal deadline is positive if and only if the ex ante probability that the

players disagree on the preferred decision is neither too high nor too low. When it is

positive, the optimal deadline is given by the shortest time that would allow efficient

information aggregation in equilibrium, which is increasing in the ex ante probability of

disagreement and is finitely long.
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1. Introduction

When disagreements are resolved through negotiations, the time horizon of the negotiation

process may influence the final outcome. In the classical finite-horizon, alternating-offer

bargaining game of Stahl (1972), deadlines affect the way players make and accept bar-

gaining demands through the logic of backward induction, even though the deadlines are

never reached in equilibrium. In war of attrition games (e.g., Hendricks, Weiss and Wil-

son 1988), conflicts are gradually resolved with the passage of time. The presence of a

deadline not only affects equilibrium behavior along the path, but can also determine the

equilibrium outcome by imposing a default decision upon the arrival of the deadline. In

both the bargaining and war of attrition models, the negotiating parties disagree because

they have opposing preferences over the outcome. In such situation of pure conflict, nego-

tiation may determine the distribution of payoffs between the parties but not their sum,

thus protracted negotiation is invariably wasteful, as it introduces costly delay without any

benefits. However, when the disagreement is driven by different private information, and

could be overcome after information-sharing, protracted negotiation can have positive wel-

fare consequences by facilitating information aggregation. This paper studies the welfare

effects of negotiation deadlines in an environment where the negotiating parties disagree

both because of diverging preferences and because of different information, and charac-

terizes the deadline that optimally balances the cost of strategic delay and the benefit of

strategic information aggregation.

Consider an emerging industry with two dominant firms trying to establish a common

standard. A firm whose current standard has a high value to the industry will want to

insist on its standard, while a firm with a low-value standard is willing to adopt the other

firm’s standard only if it is sufficiently convinced that the latter is high-valued. Since firms

with low-value standards may want to claim the opposite, sharing private information

about the value of their own standards can be impossible if the decision needs to be made

without delay. This leads to failure in agreeing to a common standard and welfare loss

when the two firms would have agreed to the high-value standard had they shared their

private information. If instead the two firms commit to engaging each other repeatedly

in reaching an agreement, the cost in delaying the decision can discourage them from
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exaggerating the value of their own standards, and generate endogenous information that

in equilibrium helps improve the quality of the standards adoption decision. The familiar

logic of backward induction suggests that the presence of a negotiation deadline affects

incentives for a firm with a low-value standard to continue to insist on its standard or

agree to switch to the rival’s standard. Indeed, from the ex ante perspective the length of

the deadline determines in equilibrium the trade-off between the payoff loss due to delay

and the improvement in the quality of the decision. This trade-off is the basis of our

welfare analysis of the negotiation deadline.1

We model negotiation under a deadlines as a symmetric, continuous time repeated

proposal game.2 At any instant two players simultaneously choose one of two choices to

propose, paying a flow cost of delay, until either they agree, at which point the agreement is

implemented, or the deadline expires and a random decision is made. The two players favor

different choices: each is willing to go along with the other player’s favorite choice only if he

is sufficiently convinced that the state is an agreement state supporting that choice. At any

point of the game, each player is either privately “informed,” meaning that he knows the

state is the agreement state corresponding to his favorite; or “uninformed,” meaning that he

is unsure whether the state is the agreement state corresponding to his opponent’s favorite,

or the state is the disagreement state with each player preferring his own favorite choice.

Thus, in each agreement state we have one informed player playing against an uninformed

player, where the latter based on his own private information may disagree with the former

over the decision but would in fact agree if he had all the information. This is the only

essential feature for deadlines to have interesting welfare effects, and is captured in the

simplest manner by the above assumptions on the information and preference structures.

Our way of modeling the deadline is equally stylized: it stops the game with a coin toss

1 Although in many situations of industry standard adoption negotiations are open-ended, we argue in
this paper that there may be potential welfare improvement to impose a binding deadline. Another example
fitting the description of our model is bargaining over child custody in divorce settlements. Sometimes
parents might be able to agree which of them is the more suitable custodian for the child if they could
share their private information. However, because of the private benefits from being the custodian, even
an unsuitable parent may want to insist on claiming custody if he or she is not sure that the other parent
is more suitable. In this example, negotiation deadlines are commonly imposed by law.

2 See Farrell (1996) for a related model of standard adoption, with a richer type space. He does not
consider deadlines.
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at some fixed future date if there is no agreement yet. We thus abstract from modeling

the details of implementing a deadline default to focus on the most salient feature of the

ex ante commitment to short circuiting the information aggregation process.

We show that generically there is a unique equilibrium in which the informed types

always “persist” by proposing their favorite alternative. The equilibrium is symmetric,

with an uninformed type’s behavior depending on the time left before the expiration of

the deadline and on his belief that the state is the disagreement state. For each belief of the

uninformed, there exists a critical time horizon such that if the time to deadline is shorter

than that horizon, the uninformed type also persists, until the deadline is reached when

he may “concede” to the opponent’s favorite alternative with a positive probability. This

intuitive deadline play consists of a “persistence phase” until the deadline arrives, followed

by the same outcome as when the players must decide without delay at the start of the

deadline play. If the time to deadline exceeds the critical horizon, the uninformed concedes

at some probability flow rate. This continuous-time version of randomization between con-

ceding and persisting results because the deadline is too long for the uninformed to persist

all the way, but at the same time conceding with a strictly positive probability would give

the opposing uninformed type incentives to persist just a little longer. Since the informed

types always persist, in this “concession phase” the Pareto-efficient decision is made with

a positive probability in an agreement state. As the negotiation game continues during

the concession phase, the uninformed’s belief about the disagreement state continuously

falls because, given the equilibrium strategies, he infers his opponent’s failure to concede

as evidence that the opponent is an informed type. When the time remaining reaches the

critical horizon, the concession phase ends and the deadline play takes over.

Extending the deadline only hurts both the informed and the uninformed if the starting

point is shorter than the critical time horizon corresponding to the initial belief: it increases

the delay without changing the equilibrium play when the deadline arrives. On the other

hand, starting from any deadline beyond the critical time horizon, an extension does not

change the welfare of the uninformed (whose equilibrium payoff is pinned down by the

payoff from concession that does not vary with the length of the deadline), but generally

affects the welfare of the informed in two ways. First, by prolonging the concession phase
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of the negotiation, it increases the chances that the informed gets his favored decision

at the cost of longer delay. Second, longer disagreement during the concession phase

convinces the uninformed that state is more likely to be the agreement state, so that

he may potentially change his the equilibrium play at the deadline by conceding to his

opponent.3 We show that when the uninformed initially has a low belief that the state

is the disagreement state, he will concede with probability one upon the arrival of the

deadline. Since the uninformed player will eventually concede, a longer concession phase is

bad for the informed player by raising the delay cost. The opposite is true for high initial

beliefs. In this case, the uninformed will concede with probability zero upon the deadline.

Therefore a longer concession phase in the negotiation is good for the informed player by

increasing the chance that the agreed decision is his favorite choice.

We provide a complete characterization of the “optimal deadline” that maximizes the

ex ante probability-weighted sum of expected payoffs of the players. Naturally, the optimal

deadline is zero when the initial belief of the uninformed about the disagreement state is

sufficiently low, as the two players can reach the Pareto-efficient decision without delay.

For intermediate initial beliefs of the uninformed, the optimal deadline is such that after

the shortest concession phase the uninformed persists until the deadline and then concedes

with probability one. Thus, the optimal deadline is the shortest time length that achieves

efficient information aggregation in equilibrium. This deadline effectively balances the

tradeoff between avoiding wasteful delay when disagreements are of fundamental nature,

and allowing the parties sufficient time to successfully reconcile disagreements driven by

different information. When positive, the optimal deadline is necessarily finite, because

given that the uninformed concedes with probability one at the deadline, extending it

further would only hurt the informed by unnecessarily prolonging the concession phase.

Further, it is bounded away from zero, because the deadline has to be long enough for

the uninformed to have the incentive to concede with probability one after the concession

and persistence phases. Finally, when positive, the optimal deadline is increasing in the

3 When the deadline is sufficiently long, with probability one the uninformed types concede before the
deadline arrives. In this case, the deadline is not binding, and an extension of the deadline has no welfare
effect.
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initial belief of the uninformed, because it takes longer to drive the uninformed player’s

belief down to a level at which he would be willing to concede upon the deadline. When

the uninformed has a sufficiently high belief about the disagreement state, the optimal

deadline is again zero. The positive welfare effects from information aggregation, obtained

by extending the deadline beyond the critical horizon, are not sufficient to compensate the

large payoff loss associated with the long deadline play.

There is a sizable theoretical literature in war of attrition and bargaining games on

the “deadline effect,” the idea that players make no attempt at reaching an agreement just

before the deadline, but when the deadline arrives there are sudden attempts to resolve

their differences.4 Hendricks, Weiss and Wilson (1988) characterize mixed-strategy Nash

equilibria of a continuous time, complete information war of attrition game, in which there

is a mass point of concession at the deadline and no concession in a time interval preceding

it. Spier (1992) shows that in pretrial negotiations with incomplete information, the set-

tlement probability is U-shaped. Ma and Manove (1993) find strategic delay in bargaining

games with complete information by assuming that there may be exogenous, random delay

in offer transmission. As early offers are rejected and the deadline approaches, there is

an increasing risk of missing the deadline and negotiation activities pick up. Also in a

bargaining game with complete information, Fershtman and Seidmann (1993) introduce

the assumption that, by rejecting an offer, players commit to not accepting poorer offers

in the future. They show that when players are sufficiently patient, there is a unique sub-

game perfect equilibrium in which players wait until the deadline to reach an agreement.

Ponsati (1995) studies a war of attrition game in which each player has private information

about his payoff loss incurred by conceding to the opponent and must choose the timing

of concession. She shows that there is a unique pure strategy equilibrium in which both

players never concede before the deadline is reached if their payoff losses are sufficiently

large. Sandholm and Vulkan (1999) consider a bargaining game in which two players make

offers continuously and an agreement is reached as soon as the offers are compatible with

4 See also Roth, Murnighan and Shoumaker (1988) for an experimental investigation of eleventh hour
agreements in bargaining. In the auction literature, “sniping” refers to bidding just before the auction
closes. This has been analyzed by Roth and Ockenfels (2002).
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each other. The only private information a player has is the deadline he faces. They show

that the only equilibrium is each player persisting by demanding the whole pie until the

deadline and then switching to concede everything to his opponent. Finally, Yildiz (2004)

shows that when players in a bargaining game are overly optimistic about their bargaining

power at the deadline, it is an equilibrium to persist until close to the deadline to reach

an agreement. However, when there is uncertainty about when the deadline arrives, the

deadline effect disappears.

Broadly consistent with the above papers, we offer a theory of the deadline effect, but

because our theory is based on asymmetric information about common values in negotia-

tions under a deadline, we are able to provide a welfare analysis of the deadline. Section

2 presents the benchmark continuous-time repeated proposal game. Section 3 contains

analysis of the game with no deadline. This analysis corresponds to the equilibrium play

in the concession phase in a game with a finite deadline, and are building blocks for the

main results. Section 4 is the main section of the paper. We first construct a symmetric

equilibrium that displays the deadline effect, and then prove that it is unique. A complete

characterization of the optimal deadline for the benchmark game is then given as the main

result of the paper. Two extensions of the benchmark model are briefly analyzed in Sec-

tion 5. The first one reconsiders the game with no deadlines abut allows for exogenous

probabilistic negotiation breakdowns; the second assumes that the players have to pay a

penalty if the decision is reached at the deadline. The extensions provide further insights

to the deadline effect, and demonstrate that our welfare analysis of deadlines is robust.

Section 6 concludes with remarks about future directions for the present line of research.

2. A Repeated Proposal Game

Two players, called L and R, have to make a joint choice between two alternatives, l and

r. We refer to l as the favorite alternative of L; and r the favorite of R. There are three

possible states of the world: L, M , and R. Both state L and state R are “agreement

states,” in which the mutually preferred alternative is l in state L and r in state R. State

M is the “disagreement state,” in which player L prefers l and player R prefers r. For

player L, the payoffs in state L are πF if l is chosen and πF if r is chosen, with πF > πF ;
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the payoffs in state R are πD if r is chosen and πD if l is chosen, with πD > πD; and the

payoffs in state M are πM if l is chosen and πM if r is chosen, with πM > πM . The payoffs

to player R are symmetrically defined.

Each player is either “informed” or “uninformed.” If informed, player L knows that

the state is L. If uninformed, he knows that the state is either M or R. The information

structure for player R is symmetric. Let γ0 < 1 be the common belief of the uninformed

types that the state is M ; we assume that it is common knowledge. The prior probability

that the state is the disagreement state M is then given by γ0/(2− γ0). The prior proba-

bility of state L and the prior probability of state R are the same, and are both equal to

(1− γ0)/(2− γ0).

The repeated proposal game is modeled in continuous time, running from t = 0 to

the deadline T . We allow T to be infinite. The two players simultaneously propose l or r

at each instant t, until the game ends. The game may end before the deadline if the two

proposals by the two players agree, in which case the agreed alternative is implemented

immediately. If instead the deadline T is reached, the game ends with the decision made

by a fair coin flip. Until the game ends, each player incurs an additive payoff loss due to

delay at a flow rate of δ.

As mentioned in the introduction, the above preference and information structures

are the simplest to capture the essential idea that players in a negotiation disagree over

the joint decision based on their private information but would agree if their information

were public. In particular, based on his own initial private information the uninformed

player L strictly prefers his favorite choice l if

γ0 > γ∗ ≡ πD − πD

πD − πD + πM − πM

,

although the state may be the agreement state R. Note that γ∗ ∈ (0, 1) by assumption.

An initial belief γ0 about the disagreement state M higher than γ∗ means that there is

a great degree of conflict between the two players. Symmetrically, an uninformed player

R strictly prefers r to l if γ0 > γ∗, but would agree with player L if the latter is known

to be informed (so the state is L). Further, we assume throughout the paper that the

benefit of implementing his favorite alternative for each player is at least as large in the

corresponding agreement state as in the disagreement state.
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Assumption 1. πF − πF ≥ πM − πM .

The above assumption ensures that the informed types have greater incentives to insist

on their favorite alternative than the uninformed types. This allows us to focus on a

particularly simple, and natural, equilibrium. It will be clear from our analysis that this

assumption is sufficient but not necessary.

Our modeling of the deadline amounts to specifying state-contingent default payoffs

if the last attempt at an agreement fails. To see this, note that when T = 0 our model

reduces to a static game in which each player can propose either l or r, and the outcome

is that an agreement is implemented immediately and a disagreement results in a decision

made by a coin flip. When the belief γ of the uninformed that the state is M is strictly

higher than γ∗, this game has a unique equilibrium with each player proposing his favorite

alternative. The equilibrium outcome is a coin flip, as the degree of conflict is too large to

allow any information sharing.5 For any belief of the uninformed γ < γ∗, there is a unique

equilibrium in which the informed types propose their own favorite and the uninformed

propose the favorite alternative of their opponent. At γ = γ∗, there is a continuum

of equilibria, in which the informed always propose their favorite while the uninformed

propose their favorite with a probability between 0 and 1. Denoting as U0(γ) and V 0(γ)

the equilibrium payoffs of the uninformed and informed types respectively, we have

U0(γ)





= 1
2γ(πM + πM ) + (1− γ)πD if γ ∈ [0, γ∗),

∈
[
γ∗πM + (1− γ∗)πD, 1

2γ∗(πM + πM ) + (1− γ∗)πD

]
if γ = γ∗,

= 1
2γ(πM + πM ) + 1

2 (1− γ)(πD + πD) if γ ∈ (γ∗, 1];

(1)

and

V 0(γ)





= πF if γ ∈ [0, γ∗),

∈
[

1
2 (πF + πF ), πF

]
if γ = γ∗,

= 1
2 (πF + πF ) if γ ∈ (γ∗, 1].

Due to the symmetry of the model, any outcome in the disagreement state is Pareto-

efficient. Thus, if γ ∈ [0, γ∗), both the informed and the uninformed receive their first

5 There is no mechanism that Pareto-improves on this outcome. More precisely, for any γ > γ∗, in any
incentive compatible outcome of a direct mechanism without transfers the probability of implementing a
fixed alternative is constant across the three states. See Damiano, Li and Suen (2009) for a formal
argument.
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best expected payoffs. However, when γ ∈ (γ∗, 1], the equilibrium outcome is inefficient,

as the expected payoffs for both types would increase if the uninformed types agree to his

opponent’s favorite alternative instead of a coin flip.6

In our model of negotiation under a deadline, the deadline simply means deciding by

a coin flip at a fixed future date T if no agreement has been reached. In practice, reaching

the negotiation deadline without an agreement may instead trigger a binding arbitration

process by an independent outside party that may involve activities such as presentations

by each player or fact-finding by the arbitrator. We have taken a reduced-form approach

by abstracting from such details of deadline implementation. The essential feature of the

deadline we are trying to capture in this model is the ex ante two-part commitment: the

negotiating parties commit to both not terminating the negotiation process before the

fixed date T , and to not extending it beyond T . Although in reality both parts of this

commitment are vulnerable to ex post renegotiation, we assume away the credibility issues

in order to take the first step towards understanding welfare implications of deadlines.

3. Preliminary Analysis

We refer to as “persisting” the act of a player proposing his own favorite alternative (player

L proposing l or player R proposing r), and “conceding” the act of proposing his opponent’s

favorite alternative. We will restrict our analysis to perfect Bayesian equilibria in which

the informed types persist with probability one throughout the game. We impose no

restriction on the strategies of the uninformed types and consider both strategies in which

the uninformed is mixing between persisting and conceding at a given instant of time,

as well strategies where the uninformed mixes continuously over an interval of time. For

histories of “regular disagreement” where both players have persisted since the beginning

of the game, such strategies can be described through two functions y : [0, T ] → [0, 1] and

x : [0, T ] → [0,∞), with the convention that x(t) = 0 whenever y(t) > 0. At any instant

6 The specification of the default decision as a coin flip when the deadline expires implies stark payoff
discontinuities in the no-delay game when the belief of the uninformed types about the disagreement state
M is exactly γ∗. Our characterization of the optimal deadline turns out to be robust with respect to the
payoff discontinuities. Section 5.2 presents an extension of the model with an alternative specification of
the deadline default payoffs that eliminates the discontinuities. All our results are qualitatively unchanged.
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t ∈ [0, T ] reached by the game, y(t) is the probability that the uninformed concedes upon

reaching time t. When y is zero on a small time interval, x(t) denotes the flow rate of

concession at any t in the interval [t, t+dt). That is, upon reaching time t, the probability

of an uninformed type proposing his rival’s alternative in the interval is x(t)dt. How the

game is played after a “reverse disagreement,” where both players simultaneously concede,

does not matter to our equilibrium construction and the welfare analysis.7 For convenience,

we assume that these are terminal histories where the decision is made by a coin toss.

3.1. Differential equations

In this section we derive some useful properties that hold in any symmetric equilibrium

where the uninformed concedes at flow rate x(t) > 0 for all t in some interval of time

[t, t), while the informed types always persist. In any such equilibrium, by indifference the

equilibrium expected payoff U(t) of an uninformed type upon reaching t ∈ [t, t) can be

computed by assuming that the uninformed type concedes at t. Denoting as γ(t) the belief

of the uninformed at time t that the state is M , we have

U(t) = γ(t)πM + (1− γ(t))πD. (2)

The above follows because by assumption y(t) = 0, and so even though his uninformed

opponent’s flow rate of concession is strictly positive, the probability that the latter con-

cedes at the given time t is zero. Since U(t) depends on t only through γ(t) in (2), we can

define a payoff function

U(γ) = γπM + (1− γ)πD, (3)

which is valid whenever γ = γ(t) and x(t) > 0 for some t ∈ [t, t).

Given that the equilibrium continuation payoff of the uninformed type is pinned down

by the belief γ(t) for any t in the interval of time [t, t), the indifference condition between

conceding and persisting on the same interval then relates the rate of change of the belief

γ to its current value γ(t) and to the equilibrium flow rate of concession x(t). Using Bayes’

7 Reverse disagreements occur with probability zero both on the path in the equilibrium constructed
below and after unilateral deviations. In proving that our equilibrium is generically unique, we require
only that the continuation payoffs after a reverse disagreement are feasible.
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rule, we obtain a differential equation for the evolution of the belief of the uninformed in

[t, t). This result is stated in Lemma 1 below, and proved in Appendix A. An immediate

implication of Lemma 1 is that the equilibrium belief of the uninformed γ(t) and the

equilibrium rate of concession x(t) in the time interval (t, t) are functions of the starting

belief γ(t) only.

Lemma 1. Let (y(t), x(t)) be the strategy and γ(t) the belief of the uninformed types in a

symmetric equilibrium where the informed types always persist. If y(t) = 0 and x(t) > 0

for all t ∈ [t, t), then

− γ̇(t)
1− γ(t)

=
δ

πM − πM

, (4)

and

x(t) =
1

γ(t)
δ

πM − πM

.

Equation (4) represents the belief evolution for an uninformed type who continuously

randomizes and whose opponent has failed to concede so far. Since the informed types

persist with probability one, γ̇(t) is negative; that is, the uninformed types attach a lower

probability to the disagreement state as the negotiation game continues. The indifference

condition between persisting and conceding then implies that the uninformed types concede

at an increasing flow rate as disagreement continues.

We can also use the equilibrium characterization of the flow rate of concession to pin

down the evolution of the equilibrium continuation payoff for the informed types. For any

t ∈ [t, t), let V(t) be the expected payoff of the informed types at time t. Since the informed

types always persist, their payoff function satisfies the following Bellman equation:

V(t) = x(t)dt πF + (1− x(t)dt)(−δdt + V(t + dt)).

This can be written as a differential equation by taking dt to 0:

V̇(t) = δ − x(t)(πF − V(t)). (5)
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Further, since γ(t) is determined by an autonomous differential equation and x(t) depends

on t only through γ(t) as given in Lemma 1, we can also describe the equilibrium contin-

uation payoff of the informed as a function V (γ). Using V̇(t) = V ′(γ(t))γ̇(t), we can show

that it satisfies the differential equation

V ′(γ) =
πF − V (γ)
γ(1− γ)

− πM − πM

1− γ
. (6)

Thus, the equilibrium payoff to the informed types is a function of the belief of the unin-

formed, even though the former know the state and always persist in equilibrium.

3.2. Equilibrium with no deadline

When there are no deadlines to the negotiation process (i.e., T = ∞), the characterization

result of Lemma 1 is sufficient for us to construct an equilibrium where the uninformed

types concede at a strictly positive flow rate until a time when they concede with probability

one.8 The equilibrium strategy and the evolution of beliefs along the equilibrium path are

entirely pinned down by the initial belief, and the atom of concession occurs when the

uninformed types become entirely convinced that the state is an agreement state. Let

g(t; γ0) be the unique solution to the differential equation (4) with the initial condition

g(0; γ0) = γ0, given by

g(t; γ0) = 1− (1− γ0)eδ∗t, (7)

where for notational brevity we have defined

δ∗ ≡ δ

πM − πM

.

Define the “terminal time” Q(γ0) such that g(Q(γ0); γ0) = 0, given explicitly by

Q(γ0) = − ln(1− γ0)
δ∗

. (8)

8 While the proposition below does not make a formal claim of uniqueness, the analysis to follow in
Section 4.2 also applies to the case when there is no deadline to the negotiation process. The equilibrium
characterized in the proposition is unique within the class of equilibria where the informed types always
persist.
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Proposition 1. Let T = ∞. There exists a symmetric equilibrium where the informed

types always persist, and where the strategy (y(t), x(t)) and the belief γ(t) of the unin-

formed types are such that:

{
y(t) = 0, x(t) = δ∗/γ(t), and γ(t) = g(t; γ0) if t < Q(γ0),

y(t) = 1, and γ(t) = 0 if t ≥ Q(γ0).

By construction, the uninformed types are indifferent between conceding and persist-

ing at any time t < Q(γ0). Further, conceding is optimal at t = Q(γ0) for the uninformed

because their belief that the state is M becomes zero at that point.9 For the informed

types, from the equilibrium strategies, their continuation payoff at the terminal time is the

first best payoff πF . In Appendix A, we use this boundary condition to explicitly solve

the differential equation (6) for the informed types’ continuation payoff for any t < Q(γ0),

and verify that it is optimal for them to always persist.

In equilibrium, protracted negotiations make the uninformed types increasingly con-

vinced that the state is the agreement state supporting the rival’s favorite choice, and

motivate them to concede at an increasing rate. This distinctive feature of “gradually in-

creasing concessions,” unique to our model of negotiation that combines preference-driven

and information-driven disagreements, has implications for the duration of the negotiation

process and its hazard rate function. Denote as τI and τU the random duration of the

game conditional on the state being an agreement state and the disagreement state respec-

tively. In the former case one of the player is an informed type, while in the latter case

both are uninformed. Since x(t)dt is the probability that the game ends in time interval

(t, t+dt] conditional on it having survived up to time t, the hazard function of τI is simply

x(t). When the state is M , independent randomizations by the two players imply that the

cumulative distribution functions FI(t; γ0) of τI and the distribution function FU (t; γ0) of

τU satisfy 1 − FU (t; γ0) = (1 − FI(t; γ0))2, and thus the hazard function of τU is 2x(t).

The hazard rate is therefore increasing in time in both cases. From an outside observer’s

point of view, however, the more interesting object is the unconditional duration of the

9 The game ends with probability one before t = Q(γ0). We specify the strategy and the belief of the
uninformed types after the terminal time to complete equilibrium description after unilateral deviations.
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negotiation game. Let τ represent this random variable, and F (t; γ0) its distribution func-

tion. As the game continues, the conditional hazard rates for τI and τU both increase, but

the probability that τ = τI , which is associated with a lower hazard rate, also increases,

so it is not obvious whether the unconditional hazard rate for τ will increase over time.10

However, from the relationship

1− F (t; γ0) =
2(1− γ0)
2− γ0

(1− FI(t; γ0)) +
γ0

2− γ0
(1− FU (t; γ0))

we can obtain the hazard function of τ as 2δ∗/(g(t; γ0)(2− g(t; γ0))), which is decreasing

in g(t; γ0).11 Since in equilibrium the belief of the uninformed types about M decreases as

disagreements continue, the unconditional hazard rate unambiguously increases in time.

Combined with the fact that the belief g(t; γ0) is increasing in γ0 for any t, an increase

in the initial belief, representing a greater degree of conflict, reduces the unconditional

hazard rate, and hence increases the unconditional expected duration of negotiation.

4. Finite Deadlines

We use the analysis in the previous section to construct a symmetric equilibrium in which

the informed types always persist, and the uninformed types generally start by continuously

randomizing between conceding and persisting when the time to the deadline is sufficiently

long, stop and persist until just before the deadline is reached, and play an equilibrium of

the no-delay game (T = 0) corresponding to the stopping belief. We later argue that this

equilibrium is unique subject to the restriction that the informed types always persist.

10 This is similar to the classic problem of duration dependence versus heterogeneity in the econometric
analysis of duration data. See, for example, Heckman and Singer (1984).

11 To derive the hazard function for τ , note that the conditional density functions fI(t; γ0) and fU (t; γ0)
and the unconditional density function f(t; γ0) satisfy

f(t; γ0)

1− F (t; γ0)
=

2(1− γ0)fI(t; γ0) + γ0fU (t; γ0)

2(1− γ0)(1− FI(t; γ0)) + γ0(1− FU (t; γ0))
=

2δ∗
g(t; γ0)(2− g(t; γ0))

,

where the last equality uses 1− FI(t; γ0)) = exp{−
∫ t

0
x(s)ds} = g(t; γ0))(1− γ0)/(γ0(1− g(t; γ0)))) and

fI(t; γ0)) = (1− FI(t; γ0)))δ∗/g(t; γ0)), and corresponding expressions for FU and fU .
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A remarkable feature of our construction is that the equilibrium randomization strat-

egy of the uninformed is identical to the no-deadline case (T = ∞). That is, when the time

to the deadline is sufficiently long, the uninformed behaves as if there is no deadline. This

feature is the main analytical advantage of a continuous time framework over a discrete

time model. It follows from equation (3) in our preliminary analysis, because there is a

unique equilibrium value function for a randomizing uninformed type that depends on the

time to deadline only through the belief of the uninformed.

4.1. Construction of an equilibrium

The necessity, in equilibrium, of a persistence phase before the deadline is reached, can

be easily understood as follows. At any time t when the belief of an uninformed type is

γ(t) = γ and he is conceding with a positive flow rate, his payoff is pinned down by the

the function U(γ) given in equation (3). For any γ > 0, this payoff is strictly lower than

the payoff from the no-delay game U0(γ) as given in equation (1). If the time remaining

to the deadline, T − t, is sufficiently short, persisting until the end and playing a no-

delay equilibrium when the deadline arrives would constitute a profitable deviation for the

uninformed. This deadline effect of having a persistence phase just before the deadline is

robust with respect to our game specification. Whenever the default payoff at the deadline

of a negotiation game yields an equilibrium payoff upon reaching the deadline that is

larger than the payoff from concession, then in any equilibrium a period of inactivity

always precedes, the arrival of the deadline.12

How long the persistence phase can last in equilibrium depends on the difference

between the payoff from immediate concession U(γ) and the payoff in the no-delay game

U0(γ). To state our equilibrium characterization result in the next proposition, we define

B(γ) as the longest length of time from the deadline such that it is an equilibrium for an

uninformed type with belief γ to persist until the deadline and then play an equilibrium

corresponding to the no-delay game associated with γ. In other words, the value of B(γ)

12 A similar deadline effect is present in existing models of war of attrition (e.g., Hendricks, Weiss and
Wilson, 1988). The novel feature of our model as a war of attrition game is that endogenous information
about the state is generated as the game continues, so that the deadline effect depends on the initial belief
through the equilibrium belief evolution prior to stopping.
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measures the length of the longest persistence phase that starts when the uninformed belief

is γ. For any belief γ 6= γ∗, this is uniquely given by

U0(γ)− δB(γ) = U(γ).

Since U0(γ∗) assumes a continuum of values, corresponding to the probability of conceding

ranging from 0 to 1, we choose the maximal value in the above equation to define B(γ∗).

Using the expressions for U0(γ) and U(γ), we have

B(γ) =

{
γ/(2δ∗) if γ ≤ γ∗,

(γ − γ∗)/(2(1− γ∗)δ∗) if γ > γ∗.
(9)

Note that B(γ) is discontinuous at γ∗. Next, for an initial belief γ0, we describe how long

it takes, in equilibrium, before the persistence phase begins. To do so, we define J(γ0) as

the earliest calendar time t such that the time-to-deadline is shorter than B(γ(t)) given

that the belief γ(t) of the uninformed evolves according to (7) starting with γ0. That is,

J(γ0) = inf
t≥0
{t : T − t ≤ B(g(t; γ0))}. (10)

Note that by definition, J(γ0) = 0 if T ≤ B(γ0). The functions J(γ0) and T − J(γ0)

describe the length of the concession and the persistence phases respectively in our equi-

librium characterization.

Proposition 2. Let T be finite. There exists a symmetric equilibrium in which the

informed types always persist, and the strategy (y(t), x(t)) and the belief γ(t) of the unin-

formed types are such that:





y(t) = 0, x(t) = δ∗/γ(t) and γ(t) = g(t; γ0) if T − t > B(g(t; γ0)) and t < Q(γ0),

y(t) = 0, x(t) = 0 and γ(t) = g(J(γ0); γ0) if B(g(t; γ0)) ≥ T − t > 0 and t < Q(γ0),

y(t) = 1, and γ(t) = 0 if T > t ≥ Q(γ0);

and

y(T ) =





0 if g(J(γ0); γ0) > γ∗,

2δ∗(T − J(γ0))/γ∗ if g(J(γ0); γ0) = γ∗,

1 if g(J(γ0); γ0) < γ∗.
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The logic of Proposition 2 is apparent from our construction of B(γ) and J(γ0). For

each belief γ of the uninformed, the equilibrium payoff function U0(γ) in the no-delay game

gives a continuation equilibrium outcome at the instant when the deadline arrives, pro-

viding the starting point for backward induction. This continuation equilibrium outcome

is unique if γ 6= γ∗, and so if the deadline T is short relative to the initial belief γ0, i.e.,

if T ≤ B(γ0), the equilibrium is for the uninformed to persist until the deadline and then

play the continuation equilibrium corresponding to γ0. By construction, when T = B(γ0),

the equilibrium payoff to the uninformed is precisely U(γ0). If γ0 = γ∗ and T ≤ B(γ∗),

we choose a continuation equilibrium in the no-delay game, corresponding to a probability

of concession y(T ) = 2δ∗T/γ∗, such that the uninformed types obtain the payoff of U(γ∗)

from this deadline play.13 Therefore, when the deadline T is sufficiently long relative to

the initial belief γ0 so that J(γ0) > 0, it is an equilibrium for the uninformed types to start

by conceding with a flow rate x(t) given in Proposition 1 for the no-deadline game until

t = J(γ0), when the belief becomes g(J(γ0); γ0) and the payoff reaches U(g(J(γ0); γ0)),

followed by the deadline play. Finally, if the deadline T is too long with T ≥ Q(γ0), the

equilibrium is identical to the one constructed in the no-deadline game.14 Details of the

proof of Proposition 2 (including the argument that the informed types will indeed persist

throughout) are presented in Appendix A.

The equilibrium behavior of the uninformed types is illustrated in Figure 1. The

horizontal axis represents both the deadline T , and for a fixed T , the time remaining

before the deadline is reached; the vertical axis is the belief of the uninformed. For ease

of interpretation, we have shown the discontinuous function B(γ) as the thick piecewise-

linear graph. It represents the boundary in the T -γ space between the “persistence phase”

when the uninformed types persist until the deadline and their belief does not change, and

the “concession phase” when they concede with a positive and increasing flow rate and

their belief continuously drops. If the deadline T is neither too long nor too short relative

13 Since any y(T ) greater than 2δ∗T/γ∗ preserves the incentives for the uninformed to persist, there is
a continuum of equilibria when γ0 = γ∗ and T < B(γ∗).

14 In this case, (10) implies that the phase-transition time J(γ0) is equal to Q(γ0) and the corresponding
belief g(J(γ0); γ0) is zero.
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to the initial belief γ0, that is, if T ∈ (B(γ0), Q(γ0)), there is a unique “phase-transition

time” from the concession phase to the persistence phrase. This is just J(γ0) defined in

(10), and satisfies

J(γ0)

{
= T −B(g(J(γ0); γ0)) if g(J(γ0); γ0) 6= γ∗,

∈ [0, T − T∗] if g(J(γ0); γ0) = γ∗,

where for convenience we have defined

T∗ ≡ B(γ∗) =
γ∗
2δ∗

.

For example, for any deadline T and initial belief γ0 on the dotted curve S in Figure 1,

the phase-transition time J(γ0) is exactly T − T∗, that is,

g(S(γ)− T∗; γ) = γ∗. (11)

Alternatively, for a given deadline T and initial belief γ0 such that T = S(γ0), the dotted

curve traces the equilibrium evolution of the belief γ(t) until the phase-transition time.
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Similarly, P and Q represent two other corner cases of equilibrium belief evolution; in both

cases the phase-transition time happens exactly when the deadline arrives so there is no

persistence phase.15

Summarizing the equilibrium play of the uninformed types, we partition the T -γ space

of Figure 1 into six regions by S, P and Q:16

Region A. The uninformed types concede with a flow rate δ∗/g(t; γ0) for t < J(γ0), and

persist for t larger.

Region B. The uninformed types concede with a flow rate δ∗/g(t; γ0) for t < J(γ0), persist

for all t ∈ [J(γ0), T ), and concede with probability 2δ∗(T −J(γ0))/γ∗ at t = T .

Region C. The uninformed types concede with a flow rate δ∗/g(t; γ0) for t < J(γ0), persist

for all t ∈ [J(γ0), T ), and concede with probability one at t = T .

Region D. The uninformed types concede with a flow rate δ∗/g(t; γ0), with the game ending

with probability one by the terminal time Q(γ0) before the deadline expires.

Region E. The uninformed types persist for all t.

Region F. The uninformed types persist for all t < T and concede with probability one at

t = T .

Each of the six regions above has its own distinctive features. Together they provide

a rich set of negotiation dynamics available in our model. In Region D, the deadline is not

binding. Gradual concessions are made at an increasing rate until an agreement is reached

as if there is no deadline; the dynamics of endogenous information aggregation is already

described in the previous section. In all other regions, the deadline is binding, with the

effect of suspending the negotiations at some point of the process in anticipation of the

arrival of the deadline. When the deadline is too short, in both Regions E and F, and

on the boundary between Regions F and B, this effect takes hold at the very beginning

so there is no attempt at resolving the differences before the deadline. The difference

15 Since the belief evolution does not depend on the deadline T in the concession phase, the three
dotted curves in Figure 1 are the same function, shifted by the deadline. Thus, P (γ) = S(γ) − T∗ for
γ ≥ γ∗, and Q(γ) is given by (8).

16 The boundary between Regions B and F is formally part of Region B. We have J(γ0) = 0 so
there is no concession phase and the uninformed types concede at t = T with probability 2δ∗T/γ∗. The
assignment of other boundaries is immaterial.
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between the two regions is that E represents a “deadlock” with no hope of ever reaching

an agreement because the initial degree of conflict is too high, while the deadline effect

in F and on the boundary between F and B describes a “cooling-off” period before an

eleventh hour attempt at striking an agreement. When the deadline is sufficiently long

relative to the initial degree of conflict, in Regions A, B and C, the negotiation all starts

off with gradual and increasing concessions as in Region D. The difference among the

three regions lies in how much time and conflict remain when the deadline effect kicks in

after the unsuccessful initial attempts. In Region A, too little time is left to overcome the

residual conflict, so the negotiation becomes a deadlock. The opposite happens in Region

C, as there is a complete change of position in the final attempt to reconcile the difference

after a cooling-off period. In between we have Region B, where more time left when the

deadline effect kicks in means a greater chance of reaching an agreement at the deadline.

4.2. Uniqueness of the equilibrium

The equilibrium constructed in Proposition 2 is generically unique in the class of perfect

Bayesian equilibria with the informed types always persisting. This is perhaps surpris-

ing, because the amount of endogenous information generated in equilibrium during the

concession phase depends on the flow rate of concession of the uninformed types, which

in turn is determined by how much the uninformed types learn in equilibrium about the

state. One may wonder if it is possible to construct multiple equilibria by coordinating

through calendar time the flow rate of concession of the uninformed types. For example,

after trying but failing to reach an agreement by conceding with a positive flow rate, the

uninformed types may persist for a fixed length of time before resuming a new concession

phase. However, this and other possibilities for multiple equilibria are ruled out by the

following proposition.

Proposition 3. Given any deadline T and initial belief γ0 of the uninformed types, except

for T < T∗ and γ0 = γ∗, there is a unique equilibrium in which the informed types always

persist.

When T < T∗ and γ0 = γ∗, there is a continuum of equilibria in which the informed

types always persist and the uninformed types persist for all t < T followed by any prob-

ability of concession equal to or greater than 2δT/γ∗ at the deadline. This multiplicity of
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equilibria is due to the multiplicity in the no-delay game (T = 0) when the initial belief

of the uninformed is γ∗. However, it is not generic, because for the same T < T∗ the

equilibrium is unique when γ0 is different from γ∗, no matter how small the difference is.17

Moreover, since at γ0 = γ∗ there is an equilibrium in the no-delay game with the first best

payoffs, we argue that the optimal deadline for γ0 = γ∗ is T = 0, and thus the particular

multiplicity at γ∗ does not affect our characterization of the optimal deadline.

The generic uniqueness of the equilibrium is important for our main objective in this

paper, which is to characterize the ex ante optimal deadline. Moreover, the uniqueness

result implies that the equilibrium strategies in the game with finite deadline T cannot be

supported as part of equilibrium in a no-deadline game, which means that deadlines are

more than a mere coordinating device to select among multiple equilibria. In Appendix

A we formally prove Proposition 3 by establishing a series of claims about the properties

of any equilibrium. Here, we give intuitive explanations for some of the properties to

highlight the underlying logic of why the equilibrium is unique.

A key step in establishing the generic uniqueness of the equilibrium is to show that in

any equilibrium the uninformed types cannot concede with a strictly positive probability

before the deadline arrives. Intuitively, if an uninformed type concedes with probability

y(t) > 0 at some time t < T , then the opposing uninformed type could persist at t

and concede immediately after. The payoff gain relative to conceding would be strictly

positive because y(t) > 0, while the loss from the extra delay would be arbitrarily small.

An immediate implication is that at any time before the deadline, an uninformed type

must either persist with probability one or concede with a positive flow rate. In other

words, the equilibrium play of an uninformed type must either be in a persistence phase

or in a concession phase.

In any equilibrium the persistence and concession phases of the two uninformed types

must be synchronized. That is, if the flow rate of concession x(t) for one uninformed type is

positive in some interval period of time, then the same is true for his uninformed opponent.

17 In addition, the multiplicity of equilibria for T < T∗ and γ0 = γ∗ is not robust with respect to the
specification of the default payoffs in the no-delay game. In the model of Section 5.2 where we introduce
a penalty that the players incur if they fail to reach an agreement when the deadline expires, the same
argument for Proposition 3 can be used to establish that the equilibrium is unique for all T and γ0.
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This is because if an uninformed player is continuously indifferent between conceding and

persisting in an interval period of time, his belief that the state is a disagreement state

must change over time. Otherwise, conceding at the beginning of the interval would

give the player the same expected payoff from the outcome but with a smaller delay cost.

Synchronization then follows because the belief of the player changes only if his opponent’s

flow rate of concession is positive. Conversely, if an uninformed player persists in some

time interval, then so does the opposing uninformed player. Thus, the belief of neither

player changes in a synchronized persistence phase. Since the payoff to an uninformed

type U(γ(t)) in a concession phase is pinned down by the corresponding belief γ(t) and is

computed with the opposing uninformed type persisting at t, a persistence phase cannot

be followed by a concession phase. Otherwise, each uninformed type would strictly prefer

to concede with probability 1 during the persistence phase to avoid the payoff loss from

the delay, which we already know cannot happen in an equilibrium.

Our game is symmetric. In any equilibrium the two uninformed types not only syn-

chronize their persistence and concession phases with the same phase-transition time, they

also adopt identical strategies in the concession phase and in the deadline play. At the

phase-transition time, both uninformed types must be indifferent between an immediate

concession and the deadline play. Since their expected payoffs from both options are func-

tions of their individual beliefs only, for the indifference conditions to hold at the same time,

their beliefs must coincide. The symmetry of the equilibrium strategy of the uninformed in

the concession phase then follows, because the uniqueness of the solution of the differential

equation (4) implies that the beliefs of the two players coincide at the phase-transition

time only if they are identical throughout the concession phase. Given the symmetry, the

construction of the boundary B(γ) and the phase-transition time J(γ0) is unique due to

the indifference of the uninformed types between an immediate concession with the payoff

U(g(J(γ0); γ0) and the deadline play with the payoff U0(g(J(γ0); γ0))− δB(g(J(γ0); γ0)),

yielding the uniqueness of the equilibrium.

4.3. Optimal deadline

In this subsection we characterize the ex ante optimal deadline for the repeated proposal

game. We start by studying the effects of marginally extending the deadline T on the
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equilibrium payoffs of the informed and the uninformed in the different regions of the T -γ0

space. Refer to Figure 1.

In Regions E and F of Figure 1, where T < B(γ0) and γ0 6= γ∗, the deadline is too short

relative to the initial belief to allow a concession phase. The welfare effect of the deadline

is clearly negative. Extending the deadline just makes the uninformed types persist for a

longer period of time without changing their behavior at the deadline. Consequently, both

the uninformed and the informed are hurt by a longer deadline.

In Region D, where T ≥ Q(γ0), the deadline is too long to allow a persistence phase.

There is no welfare effect. Since the negotiation ends before the deadline with probability

one, extending it further will not affect the equilibrium behavior or payoffs.

In Region B, where T ∈ [P (γ0), S(γ0)), the effect of lengthening the deadline is

to make the uninformed persist longer after the phase transition, but concede with a

larger probability when the deadline arrives. Since the behavior of the players during the

concession phase does not depend on T , the phase-transition time J(γ0) is also independent

of T . Once the negotiation enters the persistence phase, the uninformed types persist from

time J(γ0) through T , and then concede with probability 2δ∗(T −J(γ0))/γ∗. Lengthening

the deadline increases the delay for the informed types, but also increases their chance

of getting their favorite decision (with payoff πF ) rather than a coin toss (with payoff
1
2 (πF + πF )). The net effect on the welfare of the informed types is

∂V (γ0)
∂T

= −δ +
2δ∗
γ∗

πF − πF

2
, (12)

which is positive by Assumption 1. There is no effect on the welfare of the uninformed,

because their payoff is pinned down by U(γ0), which is independent of T . In sum, a longer

deadline is beneficial for the ex ante welfare of the players in this region.18

Finally, consider Region A where T ∈ [B(γ0), P (γ0)), and Region C where T ∈
[B(γ0), Q(γ0)) for γ0 < γ∗ or T ∈ [S(γ0), Q(γ0)) for γ0 ≥ γ∗. As in Region B, the

equilibrium play of the uninformed types in A or C also consists of both a concession

phase and a persistence phase. However, unlike in B, increasing the deadline in A or C

18 Under the selection of the continuation equilibrium given in Proposition 2, the same analysis and
conclusion hold on the horizontal segment of the boundary B, with γ0 = γ∗ and T ≤ T∗.
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lengthens the concession phase while shortening the persistence phase, with no change

in equilibrium play at the deadline (y(T ) = 0 in Region A or y(T ) = 1 in Region C).

The welfare effect on the uninformed is again nil, since their payoff is fixed at U(γ0).

The welfare effect on the informed can be studied by solving the differential equation (5)

(or equivalently, 6) with appropriate boundary conditions obtained from the equilibrium

deadline play of the uninformed types.

Take Region A for example. The game enters the persistence phase from the concession

phase at time J(γ0). From the deadline play of the uninformed types, the payoff to the

informed types at t = J(γ0) is

V(J(γ0)) =
1
2
(πF + πF )− δ(T − J(γ0)).

Their payoff at the beginning of the game is

V (γ0) = V(0) = V(J(γ0))−
∫ J(γ0)

0

V̇(t)dt,

where V̇(t) is given by equation (5). Lengthening the deadline affects the welfare of the in-

formed by changing the boundary value V(J(γ0)) directly and by prolonging the concession

phase through increasing J(γ0). The overall effect is

∂V (γ0)
∂T

= −δ + x(J(γ0))(πF − V(J(γ0)))
∂J(γ0)

∂T
. (13)

The cost of a longer deadline is δ, while the benefit to the informed is the increased

length of the concession phase times the flow rate of concession times the value of the

resulting improvement in the decision. The analysis for Region C is similar, except that

the boundary value becomes

V(J(γ0)) = πF − δ(T − J(γ0)).

The welfare effect on the informed is given by the same expression (13).

Crucial to our characterization of optimal deadline, we establish in the proof of Propo-

sition 4 below that the welfare effect (13) is positive in Region A but negative in Region C.

The intuition behind this result is quite simple. In Region A, if the game survives to the
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deadline, the uninformed will persist and the quality of the resulting decision is bad for the

informed. Therefore a longer concession phase that allows more information aggregation

in the beginning of the negotiation is highly valuable. In Region C, on the other hand,

the uninformed will concede if the game survives to the deadline. Since the informed will

eventually obtain his favorite decision, a longer concession phase in the beginning is of less

value. This explains the contrasting welfare effects for these two cases.

The welfare effects of a marginal extension of the deadline are summarized in Figure

1. A “+” sign indicates that a longer deadline improves the welfare of the informed types,

with no effect on the uninformed; a “−” sign indicates a negative welfare effect on the

informed, together with either a negative effect (in Regions E and F) or no effect (in

Region C) on the uninformed; and a “=” sign indicates that the welfare effect is nil for

both the informed and the uninformed. For γ0 ≥ γ∗, we can see that as the deadline T

increases, the welfare effect is first negative in Region E, then positive in Regions A and B,

and finally turning negative in Region C. Therefore the optimal deadline must be either 0,

or S(γ0), which is the boundary between Regions B and C. For γ0 < γ∗, we see that the

welfare effect is negative so long as the deadline is binding, and is nil when the deadline is

too long. Therefore the optimal deadline must be T = 0. To state our main result on the

optimal deadline, let

W (γ0) =
1

2− γ0
U(γ0) +

1− γ0

2− γ0
V (γ0) (14)

denote the ex ante welfare of a player before he knows his type. Define T opt to be the

length of the deadline T that maximizes W (γ0).

Proposition 4. There exists a γ ∈ (γ∗, 1) such that

T opt =





0 if γ0 ∈ [0, γ∗] or γ0 ∈ (γ, 1),

S(γ0) if γ0 ∈ (γ∗, γ),

0 or S(γ0) if γ0 = γ.

The proof of this proposition involves showing that the welfare effect (13) is positive

in Region A and negative in Region C. Together with the result that the welfare effect

(12) is positive in Region B, we establish that the local maxima of W (γ0) are at T = 0
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and T = S(γ0) when γ > γ∗. The remainder of the proof consists of comparing the values

of W (γ0) at the two local maxima. The details are in Appendix A.

Proposition 4 shows that the optimal deadline is zero when γ0 is either sufficiently

small or sufficiently large. When γ0 ≤ γ∗, the equilibrium in the no-delay game is efficient,

so that extending allowing the players to negotiate in a continuous-time game will only

introduce unnecessary delay. At the other end, when γ0 is sufficiently close to 1, under a

sufficiently long deadline the uninformed types concede at a low rate and revise their belief

slowly. Although the welfare effect of the deadline is locally positive, making the decision

immediately by flipping a coin is even better from the ex ante perspective because the long

delay is avoided in the first place.

For intermediate levels of γ0, Proposition 4 shows that the optimal deadline is both

finite and bounded away from zero. These two properties follow from the characteriza-

tion of the optimal deadline by the condition that the remaining time for negotiation is

T∗ when the belief of the uninformed types drops to γ∗ after an unsuccessful concession

phase. Alternatively, since the uninformed types in equilibrium concede with probability

one if and only if the stopping belief is γ∗ and the time remaining to the deadline is T∗,

or the stopping belief is strictly lower than γ∗, the optimal deadline for the intermediate

levels of initial belief γ0 is such that the concession phase is the shortest, and correspond-

ingly the persistence phase is longest, for there to be efficient information aggregation at

the deadline. Thus, the optimal deadline is finite for γ0 ∈ (γ∗, γ), not because too long a

deadline eventually becomes non-binding with no welfare effect, but because conditional

on achieving efficient information aggregation at the deadline, the optimal deadline mini-

mizes the length of the concession phase. That it is bounded away from zero implies that

there are discontinuities in the optimal deadline, both at γ0 = γ∗ and at γ0 = γ. These

discontinuities are not a consequence of the equilibrium payoff discontinuity in the no-delay

game.19 Rather, they are due to the deadline effect: for deadlines sufficiently short, the

uninformed types will simply persist from the start all through the deadline, which means

that the welfare effect is always negative for short deadlines. Put differently, when positive

19 In Section 5.2, where we modify the non-delay game to eliminate the payoff discontinuity, the optimal
deadline remains discontinuous.
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the optimal deadline is bounded away from zero because it has to be sufficiently long to

give incentives for the uninformed to change their deadline behavior and achieve efficient

information aggregation.

Using the definition of S in equation (11), we can obtain an explicit formula for T opt

when it is positive:

T opt =
1
δ∗

(γ∗
2

+ ln
1− γ∗
1− γ0

)
.

The above formula immediately reveals that the optimal deadline, when positive, is an

increasing function of γ0. This makes sense, because starting from a higher initial belief γ0

it takes a longer time for the revised belief to reach γ∗. It is also straightforward to verify

using the formula that T opt is decreasing in γ∗ for any δ∗. Thus, the optimal deadline for

negotiation, when positive, is longer when the flow delay cost δ is lower, when the payoff

difference in the disagreement state πM − πM is larger, or when the payoff difference in

the agreement state supporting the rival’s favorite choice, πD − πD, is smaller. These

comparative statics results are intuitive, as they all point to changes in the underlying

parameter values that make it more difficult and costly in terms of longer delay to achieve

efficient information aggregation endogenously through gradual concessions.

5. Extensions

In setting up the model we have abstracted from any detail in the deadline implementation

to focus on the welfare effect of the deadline. In this section we briefly present two exten-

sions of the model, both of which add greater detail and some degree of realism. However,

this is not the main objective of these two extensions. Rather, we use them to gain more

insight about the source of the welfare effect, and to demonstrate its robustness.

5.1. Stochastic deadlines

Our analysis so far is confined to the case of pre-committed deterministic deadlines. We

now study the repeated proposal game with exogenous but stochastic breakdowns, inter-

preted as stochastic deadlines. Let ε > 0 be the constant rate of exogenous exit, so that

upon reaching time t, the probability that the game ends exogenously in the next time

interval dt is εdt. In this event, we assume that the decision is made by a fair coin flip. For
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simplicity we assume that T = ∞. A smaller value of ε corresponds to a longer stochastic

deadline, with ε = ∞ corresponding to the no-delay game analyzed in Section 2, and ε = 0

equivalent to the no deadline game analyzed in Section 3.

Following the same steps in deriving the differential equation for γ(t) in the case of

ε = 0, we have

− γ̇(t)
1− γ(t)

= δ∗
α− γ(t)
α− γ∗

, (15)

where we have defined

α ≡ γ∗ + (1− γ∗)
2δ∗
ε

.

The derivation of the above differential equation is in the proof of Proposition B1 in

Appendix B. There are two cases to consider.

In the first case, γ0 < min{1, α}, and the differential equation (15) gives the belief

evolution of an equilibrium in which the informed types always persist and the uninformed

types with belief γ concede with a flow rate ε(α − γ)/(2(1 − γ∗)γ).20 In this case, the

exogenous exit rate ε is sufficiently small, or equivalently the stochastic deadline is suffi-

ciently long, relative to the initial belief γ0 of the uninformed. Qualitatively, this case is

similar to the no-deadline game of Section 3, or the non-binding deadline case of Section

4 (Region D in Figure 1).

In the second case, with γ0 ∈ [min{1, α}, 1), in equilibrium the uninformed types

persist with probability one at any time t just as the informed types, with the game

ending by an exogenous exit. This case occurs when the exit rate ε is great and the initial

belief γ0 is high. Since flipping a coin gives a higher payoff to the uninformed than U(γ0),

and since the expected wait for the stochastic exit to occur is short when ε is large, the

uninformed types have no incentive to deviate to conceding. This case is qualitatively

similar to short deadline case in Section 4 (Region E in Figure 1).

We are interested in the effect of the stochastic exit rate ε on players’ welfare. The

question we want to answer is whether in a game with no deterministic deadline with

T = ∞, the exogenous stochastic exit can be used to improve the ex ante welfare of the

20 If ε ≤ 2δ∗, this is the only possible case. Note that α approaches infinity as ε approaches 0, in which
case (15) reduces to (4) for the no-deadline case.
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players in a way similar to the optimal finite deadline analyzed in Section 4. Since the

equilibrium in the no-delay game (ε = ∞, or equivalently T = 0) is efficient for any initial

belief γ0 of the uninformed below γ∗, we are only interested in the question of the optimal

exogenous exit rate for γ0 > γ∗.

For the first case of γ0 < min{1, α}, the payoff function for the uninformed Uε(γ0)

is identical to U(γ0) given by in (3), and thus does not depend on ε. This is because

an uninformed type conceding with a positive rate is indifferent between persisting and

conceding, and his payoff from conceding is computed with both the opposing uninformed

type conceding and the exogenous exit occurring at the instant with probability zero. For

the informed, we show in the proof of Proposition B2 in Appendix B that the payoff

function Vε(γ0) is decreasing in ε so long as γ0 > γ∗. The intuition behind this critical

result is that an increase in the exogenous exit rate directly reduces the probability that

the informed types receive their first best payoffs, which occurs only when the uninformed

concede. Although an increase in ε generally has ambiguous effects on the equilibrium

belief evolution and hence the equilibrium flow rate of concession by the uninformed, the

negative direct effect dominates. The welfare effect of an increase in ε is negative in this

case.

In the second case of γ0 ∈ [min{1, α}, 1). Both Vε(γ0) and Uε(γ0) are increasing in ε,

because a greater exogenous rate of exit reduces the expected duration of the equilibrium

play without affecting the decision, which is always a coin flip. The welfare effect of an

increase in ε is positive in this case.

Thus, for any initial belief γ0 > γ∗, as the exogenous exit rate ε increases, starting from

ε = 0 and α arbitrarily large, the welfare effect is negative for all ε such that α > γ0, and

then positive for all greater ε. It follows that the optimal exogenous exit rate is either zero,

which makes the game equivalent to the no-deadline game of T = ∞, or infinity, which is

equivalent to ending the game by flipping a coin as in the equilibrium of the no-delay game

of T = 0. In either case, we conclude that stochastic deadlines cannot be used to improve

the ex ante welfare of the players. This failure of stochastic deadlines illustrates the crucial

role of the deadline effect, or the deadline play, in improving the ex ante welfare of the

players. Since the exogenous exit motivates the uninformed types to either always concede
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with a positive flow rate, or always persist, stochastic deadlines cannot generate the kind

of deadline effect under a finite deadline where the equilibrium play of the uninformed

types transits from an unsuccessful concession phase to a persistence phase when the time-

to-deadline and the belief jointly reach some critical time horizon. The absence of such

deadline effect under stochastic deadlines is the reason for its ineffectiveness in improving

the ex ante welfare of the players.

5.2. Deadline penalties

A notable feature of the no-delay game with T = 0 in our model is that the equilibrium

behavior of the uninformed, and the payoffs of both the uninformed and the informed

change discontinuously as γ increases from below γ∗ to above. Corresponding to this

discontinuity, there is a continuum of equilibria at γ = γ∗ when T = 0. This particular

feature is not critical for our results. We demonstrate this robustness by modifying the

model of Section 2 and introducing an additional payoff loss λ > 0 for the two players

when they fail to reach an agreement by the end of the deadline. We assume that λ is

small, with λ ≤ 1
2 (πM − πM ).21

The deadline penalty eliminates the payoff discontinuity and the multiplicity of equilib-

ria at γ∗ in the no-delay game, and redefines the boundary in the T -γ space that separates

the concession and persistence phases. Define

γ− ≡ πD − πD + 2λ

πD − πD + πM − πM + 4λ
,

and

γ+ ≡ πD − πD + 2λ

πD − πD + πM − πM

.

There is now a unique equilibrium in the no-delay game (T = 0) for any belief γ of the

uninformed. The informed types always persist. The probability that the uninformed

types concede is zero for any γ ≥ γ+, one for γ ≤ γ−, and given by

Y (γ) =
πD − πD + 2λ

4λγ
− πD − πD + πM − πM

4λ
(16)

21 This assumption says that if the state is known to be M the uninformed types still prefer the
disagreement outcome of flipping a coin and paying the penalty λ to conceding to the other side and
avoiding the penalty.
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for γ ∈ (γ−, γ+). The new boundary Bλ(γ) is continuous, determined by the same indiffer-

ence condition of the uninformed types between an immediate concession and the deadline

play

U(γ) = −δBλ(γ) + U0
λ(γ),

where U(γ) remains the same as before and is given by (3), and U0
λ(γ) is the unique con-

tinuation payoff in the no-delay game. The new boundary is shown as the thick piecewise

linear graph in Figure 2. The main difference is that the horizontal segment corresponding

to γ∗ in Figure 1 is replaced by the downward sloping segment between γ+ and γ− in

Figure 2 when λ > 0.

Both the equilibrium characterization and the welfare analysis are quite similar to

those for the case λ = 0, as can be seen in Figure 2 with two of the dotted curves indexed

by λ. They are formally stated as Propositions C1 and C2 and proved in Appendix C.

Here, we highlight the main difference that arises in this extension, which is the welfare

analysis of the deadline in Region B in Figure 2. Let Jλ(γ0) represent the phase-transition

time when the updated belief hits the downward-sloping segment of the boundary Bλ. The
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payoff Vλ(Jλ(γ0)) to the informed types at Jλ(γ0) is:

−δ(T − Jλ(γ0)) + Y (g(Jλ(γ0); γ0))πF +
(
1− Y (g(Jλ(γ0); γ0))

)(πF + πF

2
− λ

)
.

This is the boundary condition that determines the equilibrium payoff to the informed

through the differential equation (5). Using the same argument as in the case without

deadline penalty, we can decompose the welfare effect of the deadline ∂Vλ(γ0)/∂T in three

terms as follows:

−δ + Y ′(g(Jλ; γ0))ġ(Jλ; γ0)
(πF − πF

2
+ λ

)∂Jλ

∂T
+ xλ(Jλ)(πF − Vλ(Jλ))

∂Jλ

∂T
. (17)

Lengthening the deadline prolongs the concession phase (∂Jλ/∂T > 0). The cost is the

additional delay, represented by the first term above, but there are two benefits, represented

by the second and third terms. The second term results because a prolonged concession

phase means that the updated belief is lower when it hits the boundary (ġ < 0), and

thus the uninformed types concede with a higher probability at the deadline (Y ′ < 0 for

g(Jλ; γ0) between γ+ and γ−), reducing the chance of making the wrong decision and

incurring the penalty. This term generalizes the second expression in (12) for Region B in

the case of λ = 0. The third term is proportional to the flow rate of concession xλ(Jλ) by

the uninformed times the relative benefit of reaching an agreement during the concession

phase. This term takes the form as in (13) for Regions A and C in the case of λ = 0, but is

absent from (12) because the horizontal segment in Figure 1 means that ∂J/∂T = 0 when

λ = 0 in Region B. In spite of the differences, in the proof of Proposition C2 in Appendix

C we show that the overall effect (17) is positive, as in Region B of Figure 1.

As in Section 4 where λ = 0, the optimal deadline is 0 for γ0 ≤ γ−, and is either 0

or Sλ(γ0) for γ0 > γ−, where Sλ(γ0) is such that when the belief of the uninformed as

determined by g(t; γ0) reaches γ− the time remaining is Bλ(γ−). That is,

g(Sλ(γ0)−Bλ(γ−); γ0) = γ−.

In the proof of Proposition C2 in Appendix C we compare the ex ante welfare at these

two local maxima, and show that there exists an intermediate range of beliefs γ0 above
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λ− for which the optimal deadline is Sλ(γ0). Thus, the optimal deadline, when positive,

is still characterized by the shortest concession phase that achieves efficient information

aggregation at the deadline. The main properties of the optimal deadline established for

the case of λ = 0, that it is finite, bounded away from zero and increasing in the degree of

conflict, are all robust to the introduction of the deadline penalty.

6. Concluding Remarks

This paper is an outgrowth of our earlier paper (Damiano, Li and Suen, 2009). In that

paper we use a discrete time model with more restrictive preference assumptions to show

that costly delay can improve strategic information aggregation and hence ex ante welfare

in a variety of environments with regard to deadlines. See Damiano, Li and Suen (2009)

for a more comprehensive list of references to related papers on dynamic games with

asymmetric information. However, the discrete time framework is not suitable for studying

the issue of optimal deadlines in strategic information aggregation, because an explicit

characterization of equilibrium play is difficult to obtain.

In our model the positive welfare effects of extending the deadline are directly related

to the deadline behavior of the uninformed stopping the concessions at some point and

then conceding with a positive probability upon reaching the deadline. A longer deadline

is beneficial for the informed even though the uninformed types persist for a longer period

of time during the deadline play, because the latter concede with a greater probability

when the deadline is reached. We have argued that the failure in inducing this deadline

behavior is the reason that stochastic deadlines, or exogenous negotiation breakdowns, are

ineffective in raising the ex ante welfare for the informed. However, an implicit assumption

we have made in modeling stochastic deadlines is that exogenous breakdowns occur at a

constant flow rate. We have not investigated either time-varying flow rates, or atoms in the

flow rate. The latter case is perhaps more natural way of modeling stochastic deadlines,

and is likely to generate some deadline behavior and positive welfare effects of increasing

the breakdown rate. A related point is that we have assumed throughout that the two

parties incur payoff losses from delay at a constant flow rate. It is possible that delay cost

exhibits atoms in the flow rate that correspond to temporary suspensions of the negotiation
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process. We expect such atoms to generate some kind of deadline behavior and positive

welfare effects. All these issues are left for future research.

In our framework of negotiation with a finite deadline, we have shown that there is

a boundary in the space of the belief of the uninformed and the time remaining to the

deadline, which separates the region where the uninformed types concede at the same flow

rate as when there is no deadline, and the region where the uninformed types stop the

concessions and the evolution of the belief until the deadline and then concede with the

same probability as when there is no delay. Modifications to the no-delay game change

the equilibrium play only through changing the shape of the boundary. Although we have

chosen the most natural no-delay game in our setup, it would be interesting to decouple

the no-delay game and the no-deadline game by considering the no-delay payoffs in other

reduced forms. Doing so may provide more general insights about the deadline effects and

the optimal deadlines than the present model.

Our repeated proposal game is symmetric, and we have shown that there is a unique

equilibrium and it is symmetric. Games with asymmetric preferences and delay costs are

worth future research because asymmetry adds an interesting element to equilibrium dy-

namics of information aggregation. The restriction to equilibria in which the informed

types always persist is natural in our setup because the informed types know what the

mutually preferred choice is. Our Assumption 1, which states that the payoff loss from

making the wrong choice is greater for the informed types than the payoff loss from con-

ceding in the disagreement state for the uninformed, is shown to be sufficient for us to

focus on equilibrium play of the uninformed and turn to the informed only for welfare

analysis. In a more general setup, we may have one type better but not perfectly informed

about the mutually preferred choice than other types. This would be more challenging as

there is no longer the dichotomy between strategic analysis and welfare analysis, but the

present paper may still provide a good starting point.

Our result that the optimal deadline is positive and increasing for intermediate levels of

initial conflicts hinges on two implicit assumptions about the game that may be questioned

in practice. First, the two parties in the joint decision situation are assumed to be able

to commit to a precise deadline at the start of the negotiation process. According to our
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characterization of equilibrium play, before the process reaches the critical point when the

parties are supposed to become inactive until the deadline arrives, they have no incentive

to renegotiate the deadline. However, as soon as the critical point is reached, they would

want to jump to the end-game play immediately. Of course if such renegotiation of the

deadline is anticipated the equilibrium play before this critical point would be changed. It

is potentially interesting to formalize this commitment issue and reexamine the optimal

deadline. The other implicit assumption we have made is that the initial belief of the

uninformed is common knowledge between the two parties when setting the deadline.

We hasten to emphasize that our result that extending the deadline can have positive

welfare effects is robust to slight perturbations to the initial belief of the uninformed.

However, a perhaps more interesting issue is whether the two parties may find some way

to communicate their knowledge about the initial degrees of conflict before jointly setting

the deadline for negotiation. Such communication raises strategic issues that are worth

further research in the future.
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Appendix

A. Proofs

Proof of Lemma 1.

For all time interval [t, t+dt) in [t, t), an uninformed type is indifferent between conceding,

with the payoff U(t) given in (2), and persisting. Therefore,

U(t) = γ(t)x(t)dt πM +
(
γ(t)(1− x(t)dt) + (1− γ(t))

)
(−δdt + U(t + dt)).

Subtracting U(t + dt) from both sides of the equation, dividing by dt, and taking the

limit as dt goes to 0, we have a differential equation for the value function U(t). Using

equation (2) for the value function, we can transform this differential equation for U(t)

into a differential equation for γ(t), given by

γ̇(t) = γ(t)x(t)
(

γ(t) +
πM − πD

πD − πM

)
− δ

πD − πM

.

By Bayes’ rule, given the uninformed opponent is using the strategy represented by x(t),

the updated belief after persisting for the time interval [t, t + dt) is

γ(t + dt) =
γ(t)(1− x(t)dt)

γ(t)(1− x(t)dt) + (1− γ(t))
.

As dt goes to 0, the updating formula can be written as:

γ̇(t) = −γ(t)(1− γ(t))x(t).

The two equations for γ̇(t) and x(t) reduce to (4). Using (4) and Bayes’ rule, we also get

x(t) =
1

γ(t)
δ

πM − πM

.

Proof of Proposition 1.

It suffices to show that it is optimal for the informed types to always persist. This is clearly

the case at t = Q(γ0)), implying that the continuation payoff for the informed is πF when
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the belief of the uninformed becomes 0. Using V (0) = πF as the boundary condition for

the differential equation (6), and solving it, we have

V (γ) = πF −
(

1 +
1− γ

γ
ln(1− γ)

)
(πM − πM ).

The above gives the equilibrium payoff of the informed types for any t < Q(γ0) so that

γ > 0. It is immediate from the solution that it is greater than or equal to πF −(πM−πM )

for all γ, which by Assumption 1 is greater than or equal to πF . Thus it is optimal for the

informed to persist for any t < Q(γ0).

Proof of Proposition 2.

Using the expressions (8) and (9), we can easily verify that B(γ) ≤ Q(γ), with equality

if and only if γ = 0. Thus, for T and γ0 such that T < Q(γ0), there is a unique phase-

transition time J(γ0) given by (10). Further, J(γ0) > 0 if and only if T > B(γ0). Finally,

for T and γ0 such that T ∈ (B(γ0), Q(γ0)), by construction we have

U(g(J(γ0); γ0)) = U0(g(J(γ0); γ0))− δB(g(J(γ0); γ0)),

so that the equilibrium payoff of the uninformed is continuous at t = J(γ0). We discuss

three cases separately.

Case (i): T ≤ B(γ0). The construction of B implies that it is optimal for the uninformed

to persist for all t < T and then concede with probability y at t = T , with y = 1 if γ0 < γ∗,

y = 2δ∗T/γ∗ if γ0 = γ∗, and y = 0 if γ0 > γ∗. For the informed types, at any t ≤ T ,

persisting all through the deadline yields

yπF + (1− y)
πF + πF

2
− δ(T − t).

Conceding at any t < T yields πF , which by Assumption 1 is smaller than the above

because

T − t < B(1) =
1

2δ∗
=

πM − πM

2δ
.

Conceding at t = T cannot be optimal either because it is not part of any equilibrium of

the no-delay game.
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Case (ii): T ∈ (B(γ0), Q(γ0)). Case (i) already establishes that there is no incentive for

any player to deviate at any t ≥ J(γ0). Since the equilibrium payoff of the uninformed

is continuous at t = J(γ0), there is no incentive for the uninformed to deviate at any

t < J(γ0) either. For the informed types, at any t < J(γ0) and corresponding belief

γ = g(t; γ0) of the uninformed, the equilibrium payoff V (γ) is given by the following

solution to the differential equation (6)

V (γ) = πF − 1− γ

γ
ln(1− γ)(πM − πM ) +

1
γ

(
(1− γ)(C + πF )− (πM − πM )

)
,

where C is a constant determined by the boundary condition

V (g(J(γ0); γ0)) = yπF + (1− y)
πF + πF

2
− δ(T − J(γ0)).

We already know from case (i) that V (g(J(γ0); γ0) ≥ πF . For any γ > g(J(γ0); γ0), we

have V (γ) ≥ πF if

(πF − πF )− (πM − πM )
1− γ

− ln(1− γ)(πM − πM ) + C ≥ −πF ,

which is true because the left-hand-side is increasing in γ by Assumption 1. Thus, it is

optimal for the informed types to persist for all t < J(γ0).

Case (iii): T ≥ Q(γ0). The strategy and the belief given in the proposition form an

equilibrium identical to the one in Proposition 1.

Proof of Proposition 3.

We first establish a series of claims. The proposition follows immediately after Claim 4

below.

Claim 1. In any equilibrium where the informed types always persist, y(t) = 0 for all

t ∈ (0, T ).

Proof. First, we show that y(t) < 1 for both uninformed types at any time t < T .

Suppose there is an equilibrium where an uninformed player concedes for sure at some

t < T . Then, for any η > 0, his uninformed opponent must concede with probability one

before t + η. This is because, if the game continues past t, the opponent believes that
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the state is the agreement state with probability one, and thus conceding immediately

is optimal. Then, for η sufficiently small, persisting in the interval [t, t + η) and then

conceding at t + η yields a strictly larger payoff than conceding with probability one at t

for the initial player.

Next, we show that for any t < T it cannot be the case that both uninformed types

concede with strictly positive probabilities. If γ(t) is the belief of an uninformed player

upon reaching t, his equilibrium payoff is

γ(t)y(t)Ur + γ(t)(1− y(t))πM + (1− γ(t))πD,

where y(t) is the probability that the opponent concedes at t and Ur the player’s payoff in

the continuation equilibrium after reverse disagreement. For any small and positive η, the

payoff to the player from persisting in the interval [t, t + η) and then conceding at t + η, is

at least as large as

γ(t)y(t)πM + γ(t)(1− y(t))πM + (1− γ(t))πD − ηδ.

Because the sum of the two players’ payoffs in the continuation game after reverse disagree-

ment cannot exceed πM + πM , for η sufficiently small at least one of the two uninformed

types has a profitable deviation.

Suppose now that one uninformed player concedes with positive probability at some

t ∈ (0, T ). His equilibrium payoff upon reaching t is U(γ(t)). Further, an argument similar

to the above can be used to establish that for all η sufficiently small, his uninformed

opponent must persist in the interval of time [t− η, t]. This implies that the player’s belief

γ does not change during the same interval. Then, conceding with probability one at t− η

is uniquely optimal because the player gets the same payoff from the decision but with a

smaller delay cost. This is a contradiction because we have shown that conceding with

probability one at any time but the deadline cannot be part of equilibrium strategies.

Claim 2. If in equilibrium the flow concession rate for one of the uninformed players is

x(t) = 0 for all t in an open interval (t, t), then the same is true for the other uninformed

player. Further, x(t) = 0 for all t ∈ (t, T ).
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Proof. For the first part of the claim, suppose x(t) = 0 for an uninformed player in

an interval (t, t). Then, his uninformed opponent’s belief does not change over the same

period. By the same argument as in the proof of Claim 1, if the opponent’s equilibrium

strategy is such that x̃(t′) > 0 for some t′ ∈ (t, t), it must also be the case that ỹ(t) = 1

for all t ∈ (t, t′), a contradiction to Claim 1. For the second part of the claim, the same

argument as above implies that if t′ = inft≥t{t : x(t) > 0} < T , then the equilibrium

strategy of this uninformed player must prescribe that y(t) = 1 for all t ∈ (t, t′), again a

contradiction.

Claim 3. All equilibria where the informed always persist are symmetric.

Proof. First, we show that in any equilibrium if t′ ≡ inf{t : x(t) = 0} > 0, then the

beliefs of the uninformed types upon reaching t′ are identical. By Claim 2, both uninformed

types stop conceding at the same time t′ and persist until the deadline is reached. Thus,

the belief of each uninformed type upon reaching the deadline is the same as his belief

upon reaching t′. Since t′ is interior, Claim 1 implies that at t′ both uninformed types

are indifferent between conceding and persisting until the deadline and then playing the

equilibrium strategy in the no-delay game associated with their own belief at t′. Suppose

that upon reaching t′, both the belief γL of the uninformed player L and the belief γR

of the uninformed player R are above γ∗. If B is the time left to the deadline at t′ the

indifference conditions of the two uninformed players are

γLπM + (1− γL)πD = γL
πM + πM

2
+ (1− γL)

πD + πD

2
− δB

γRπM + (1− γR)πD = γR
πM + πM

2
+ (1− γR)

πD + πD

2
− δB.

The above can be satisfied for the same B only if γL = γR. If γL = γR = γ∗, for the two

indifference conditions to hold for the same B, the equilibrium strategy upon reaching the

deadline must also be symmetric. The other cases are similar.

Claim 2 above has already established the symmetry of the equilibrium strategy for

uninformed types when t′ = 0. If instead t′ > 0, the same claim also implies that both

uninformed players concede at a strictly positive flow rate in the interval (0, t′). Since

the belief upon reaching t′ is the same in equilibrium for the two uninformed types, the
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uniqueness of the solution to the differential equation for the equilibrium evolution of the

belief implies that both the beliefs and the flow rate of concession are identical for the

two players for any t ∈ (0, t′). Since the initial belief γ0 is identical for the two players,

neither player can concede with a positive probability at t = 0 either, thus the equilibrium

strategies are symmetric for all t.

Claim 4. For any initial belief γ0 of the uninformed types, equation (9) gives the unique

value of B(γ0) such that in any equilibrium x(0) = 0 if T < B(γ0) and x(0) > 0 if

T > B(γ0).

Proof. Fix any initial belief γ0. Suppose that in some equilibrium x(0) = 0 for some

deadline T > B(γ0). By Claim 2, we have x(t) = 0 for all t ∈ [0, T ). The payoff to the

uninformed in this posited equilibrium is then −Tδ+U0(γ0) where U0 is the payoff function

of the no-delay game (with the best equilibrium payoff corresponding to the uninformed

conceding with probability one in the case of γ0 = γ∗). By the construction of B(γ0), this

payoff is strictly less than the payoff from conceding immediately at t = 0, a contradiction.

Now, suppose that in some equilibrium x(0) > 0 for some deadline T < B(γ0). The

expected payoff to the uninformed from this posited equilibrium is equal to the payoff

from conceding immediately, which is U(γ0). Consider the following deviation strategy

for an uninformed type: persist until the deadline, and then play the unique equilibrium

strategy in the no-delay game corresponding to γ0 if γ0 6= γ∗ and concede with probability

one if γ0 = γ∗. For γ0 6= γ∗, since the payoff to the uninformed increases whenever the

uninformed opponent concedes, and in the no-delay game the equilibrium probability of

concession is decreasing in the belief of the uninformed, the payoff from this deviation is at

least as large as when the opposing uninformed type follows the same deviation strategy.

The same is true for γ0 = γ∗, because if the uninformed opponent initially concedes with

a positive flow rate for any arbitrarily small interval of time, his belief falls below γ∗ in

the posited equilibrium. It follows then from the construction of B that this is a profitable

deviation, a contradiction.

Proof of Proposition 4.
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First, we show that the welfare effect (13) is positive in Region A of Figure 1. The phase-

transition time J(γ0) is defined by the indifference condition:

δ(T − J(γ0)) = U0(g(J(γ0); γ0))− U(g(J(γ0); γ0)) =
g(J(γ0); γ0)− γ∗

1− γ∗

πM − πM

2
.

Taking derivative respect to T , and using the fact that ġ = −(1− g)δ∗, we obtain:

∂J(γ0)
∂T

=
2(1− γ∗)

1− 2γ∗ + g(J(γ0); γ0))
.

Furthermore, by Assumption 1,

πF − V(J(γ0)) =
πF − πF

2
+ δ(T − J(γ0)) >

πM − πM

2

(
1 +

g(J(γ0); γ0)− γ∗
1− γ∗

)
.

Finally, since x(J(γ0)) = δ∗/g(J(γ0); γ0), we have

x(J(γ0))(πF − V(J(γ0)))
∂J(γ0)

∂T
>

δ

g(J(γ0); γ0)
> δ.

Next, we show that the welfare effect (13) is negative in Region C. The phase-transition

time J(γ0) is defined by:

δ(T − J(γ0)) = g(J(γ0); γ0)
πM − πM

2
.

Take derivative respect to T to get ∂J(γ0)/∂T = 2/(1 + g(J(γ0); γ0)). Furthermore,

πF − V(J(γ0)) = δ(T − J(γ0)) = g(J(γ0); γ0)
πM − πM

2
.

Therefore,

x(J(γ0))(πF − V(J(γ0)))
∂J(γ0)

∂T
=

δ

1 + g(J(γ0); γ0)
< δ.

The final part of the proof is to compare the value of W (γ0) at the two local maxima

T = 0 and T = S(γ0) for γ0 > γ∗. The ex ante welfare W 0(γ0) for T = 0 is given by

(14). Let US(γ0) and V S(γ0) be the welfare of the uninformed and the informed when

T = S(γ0). We have US(γ0) = γ0πM +(1−γ0)πD as given by (3). Solving the differential

equation (6) for the payoff to the informed with the boundary condition V (γ∗) = πF −δT∗,

we obtain

V S(γ0) = πF − 1− γ0

γ0

(
ln

(1− γ0

1− γ∗

)
+

1
1− γ0

− 2− γ2
∗

2(1− γ∗)

)
(πM − πM ).
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The difference in ex ante welfare WS(γ0)−W 0(γ0) is equal to ∆(γ0)/(2(2− γ0)), where

∆(γ0) =(1− γ0)(πF − πF + πD − πD)− γ0(πM − πM )

− 2(1− γ0)2

γ0

(
ln

(1− γ0

1− γ∗

)
+

1
1− γ0

− 2− γ2
∗

2(1− γ∗)

)
(πM − πM ).

Take derivative of ∆ with respect to γ0 to obtain:

∆′(γ0) = −(πF − πF + πD − πD)− 3(πM − πM )

+
2(1− (γ0)2)

(γ0)2

(
ln

(1− γ0

1− γ∗

)
+

1
1− γ0

− 2− γ2
∗

2(1− γ∗)

)
(πM − πM ).

The limit of the last term as γ0 goes to 1 is equal to 4(πM −πM ). Further, it is increasing

for all γ0 > γ∗: the derivative has the same sign as

−1− (1 + γ0)2 − 2 ln
(1− γ0

1− γ∗

)
+

2− γ2
∗

1− γ∗
,

which is an increasing function of γ0; at γ0 = γ∗, this derivative is equal to γ3
∗/(1 − γ∗),

which is positive. Thus, ∆′(γ0) ≤ −(πF −πF +πD−πD)+πM −πM , which is negative by

Assumption 1. We have proved that ∆(γ0) = 0 implies ∆′(γ0) < 0 for all γ0 > γ∗. Note

that limγ0↓γ∗ ∆(γ∗) = (1−γ∗)(πF−πF−γ∗(πM−πM )), which is positive by Assumption 1.

Also, limγ0→1 ∆(γ0) = −(πM − πM ) < 0. It follows from the intermediate value theorem

that there exists a γ ∈ (γ∗, 1) such that ∆(γ) = 0. Moreover, the single-crossing property

of ∆ implies that such γ is unique, with WS(γ0) > W 0(γ0) if and only if γ0 ∈ (γ∗, γ).

B. Stochastic deadlines

Proposition B1. Suppose that T = ∞ and ε > 0. There exists a symmetric equilibrium

in which the informed types always persist; the uninformed types with belief γ concede with

a flow rate equal to ε(α−γ)/(2(1−γ∗)γ) if γ(t) ∈ (0, min{1, α}), concede with probability

one if γ = 0 and persist if γ ∈ [min{1, α}, 1); and the belief γ(t) of the uninformed solves

(15) with the initial value γ0 if γ0 < min{1, α}, and is equal to γ0 if γ0 ∈ [min{1, α}, 1).

Proof. First, we derive the differential equation (15) for the equilibrium belief evolution.

Note that the expected payoff of the uninformed from conceding is still given by (2). The

payoff from persisting becomes

γ(t)xε(t)dt πM +
(
γ(t)(1− xε(t)dt) + (1− γ(t))

)
(1− εdt)(−δdt + U(t + dt))

+ εdt
(
(1− γ(t))

πD + πD

2
+ γ(t)(1− xε(t)dt)

πM + πM

2

)
,
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where xε(t) denotes the flow rate of concession by the uninformed. Equating the two payoff

expressions and using the same Bayes’ rule as in the proof of Lemma 1 immediately give

us (15). The corresponding flow rate of concession is

xε(t) =
ε(α− γ(t))

2(1− γ∗)γ(t)
.

For the case of γ0 ∈ (0, min{1, α}), it suffices to verify that the equilibrium payoff of

the informed is at least as large as the payoff from deviating to conceding, which is equal

to πF regardless of ε. The differential equation for the value function of the informed is

V ′
ε (γ) = − (α− γ∗)(πM − πM ) + (1− γ∗)(πF − πF )

(1− γ)(α− γ)
+

α− γ + 2(1− γ∗)γ
γ(1− γ)(α− γ)

(πF − Vε(γ)),

with the boundary condition Vε(0) = πF . The solution to this differential equation is

Vε(γ) = πF −
(

1− 1− γ

γ

H(γ)
2(1− γ∗)

)
(α− γ∗)(πM − πM ) + (1− γ∗)(πF − πF )

(α− γ∗) + (1− γ∗)
,

where

H(γ) ≡ α− α

(
α(1− γ)
α− γ

)2ε/(2δ∗−ε)

.

Note that H(γ) > 0 for all γ ∈ (0, α), regardless of whether α is greater or less than 1.

Since
(α− γ∗)(πM − πM ) + (1− γ∗)(πF − πF )

(α− γ∗) + (1− γ∗)
≤ πF − πF ,

it follows immediately from Assumption 1 that Vε(γ) ≥ πF for all γ.

For the case of γ0 ∈ [min{1, α}, 1), in equilibrium the game ends with exogenous exit,

with a terminal payoff of 1
2 (πF + πF ) to the informed and

γ
πM + πM

2
+ (1− γ)

πD + πD

2

to the uninformed. Further, the exogenous exit time follows an exponential distribution

with parameter ε, and hence the expected duration of the game is 1/ε. Thus, the equilib-

rium expected payoff loss from delay is δ/ε for both the informed and the uninformed. If

the uninformed types deviate to conceding, the expected payoff is

γπM + (1− γ)πD < γ
πM + πM

2
+ (1− γ)

πD + πD

2
− δ

ε
,
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because γ < α. For the informed, the expected payoff from concession is πF , which is

lower than the equilibrium payoff because πF − πF ≥ 2δ/ε, by Assumption 1 and by the

assumption that α < 1.

Proposition B2. Suppose that T = ∞. For any γ0 > γ∗, the optimal exogenous exit

rate is either zero or infinity.

Proof. We only need to establish that the payoff function Vε(γ0) for the case γ0 <

min{1, α} is indeed decreasing in ε for γ0 > γ∗.

It is convenient to use the fact that limγ0→0 H(γ0) = 0 to write

H(γ0) =
∫ γ0

0

h(γ) dγ,

where

h(γ) =
2(1− γ∗)
(1− γ)2

(
α(1− γ)
α− γ

)(2δ∗+ε)/(2δ∗−ε)

.

The term H(γ0)(1− γ0)/γ0 is decreasing in γ0 because its derivative is

1− γ0

γ0
h(γ0)− 1

(γ0)2
H(γ0)

=− α

(γ0)2

(
1−

(
α(1− γ0)
α− γ0

)2ε/(2δ∗−ε) (
2(1− γ∗)γ0

α− γ0
+ 1

))

=− α

(γ0)2

∫ γ0

0

2(1− γ∗)
(

α(1− γ)
α− γ

)2ε/(2δ∗−ε)
γ((α− γ∗) + (1− γ∗))

(α− γ)2(1− γ)
dγ,

which is negative as α > γ∗. Now, since limγ0→0 H(γ0) = 0, and thus

lim
γ0→0

H(γ0)
γ0

= lim
γ0→0

h(γ0) = 2(1− γ∗),

we have
1− γ0

γ0

H(γ0)
2(1− γ∗)

< 1

for all γ0 > 0. Because the coefficient on H(γ0) in the Vε(γ0) function is increasing in ε,

a sufficient condition for Vε(γ0) to be decreasing in ε is that H(γ0) is increasing in α. A

sufficient condition for the latter is that ln h(γ0) is increasing in α, or

− ln
(

α(1− γ0)
α− γ0

)
+

(α− 1)γ0

α(1− γ0)
(α− γ∗) + (1− γ∗)

2(1− γ∗)
> 0.
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Since the above is equal to 0 at γ0 = 0, it is sufficient if its derivative with respect to γ0

is strictly positive. This derivative is given by

(
α− 1
α− γ0

)2 (
1

1− γ0
− 1

2(1− γ∗)

)
.

Therefore, Vε(γ0) decreases with ε so long as γ0 > γ∗.

C. Deadline penalties

Proposition C1. Suppose that T < ∞, and λ ∈ (0, (πM −πM )/2]. There is a symmetric

equilibrium in which the informed types always persist; the strategy of the uninformed

types at time t with any belief γ is such that: (i) if t = T , concede with probability one

if γ ≤ γ−, with probability 0 if γ ≥ γ+, and with probability Y (γ) if γ ∈ (γ−, γ+); (ii)

if T − t ∈ (0, Bλ(γ)], persist; and (iii) if T − t > Bλ(γ), concede with a flow rate δ∗/γ if

γ > 0 and with probability one if γ = 0.

Proof. For case (i), we show that there is a unique equilibrium in the game without delay

(T = 0). Fix a belief γ that the state is M for an uninformed player. Suppose that the

opposing uninformed type concedes with probability y. Then the difference between an

uninformed player’s payoff from conceding and his payoff from persisting is

−γ
(πM − πM

2
− λ

)
+ (1− γ)

(πD − πD

2
+ λ

)
− 2γλy.

The above is strictly decreasing in y, and therefore there is a unique equilibrium for any γ,

given as follows. If γ ≤ γ−, then the difference in payoffs is always non-negative, and thus

the unique equilibrium is y = 1; if γ ≥ γ+, the difference in payoffs is always non-positive

and thus the unique equilibrium is y = 0; and if γ ∈ (γ−, γ+), the unique equilibrium is

y = Y (γ), where Y (γ) is given by (16).

For case (ii), the equilibrium payoff to the uninformed at any time t′ ∈ [t, T ) from

persisting throughout the game is given by

γ
(
Ỹ (γ)πM + (1− Ỹ (γ))

(πM + πM

2
− λ

))
+ (1− γ)

(πD + πD

2
− λ

)
− δ(T − t′),
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where

Ỹ (γ) =





1 if γ ≤ γ−

Y (γ) if γ0 ∈ (γ−, γ+)

0 if γ ≥ γ+.

It is straightforward to show that if t′ = t and T − t = Bλ(γ), the above is equal to U(γ),

the deviation payoff to the uninformed from conceding at time t′ given the equilibrium

strategy of the uninformed opponent. Thus, there is no incentive for the uninformed to

deviate for any time t′ ∈ [t, T ). For the informed types, at any t′ ∈ [t, T ] the equilibrium

payoff from persisting is

Ỹ (γ)πF + (1− Ỹ (γ))
(πF + πF

2
− λ

)
− δ(T − t′).

The payoff from conceding right away is πF . It is optimal for the informed to persist if

Ỹ (γ)(πF − πF ) + (1− Ỹ (γ))
(πF − πF

2
− λ

)
≥ δT.

We have just argued that the uninformed type weakly prefers persisting until the deadline

followed by conceding with probability Ỹ (γ) to conceding immediately. Since Ỹ (γ) > 0

for γ < γ+, the equilibrium condition of the uninformed implies that

γỸ (γ)
(πM + πM

2
− λ

)
+ γ(1− Ỹ (γ))πM + (1− γ)πD − δ(T − t) ≥ U(γ),

or

γỸ (γ)
(πM − πM

2
− λ

)
≥ δ(T − t).

By Assumption 1 and the assumption that λ ≤ 1
2 (πM − πM ), we have

Ỹ (γ)(πF − πF ) + (1− Ỹ (γ))
(πF − πF

2
− λ

)
>

πF − πF

2
− λ > γỸ (γ)

(πM − πM

2
− λ

)
,

and thus the equilibrium condition of the informed is satisfied. For the case of γ ≥ γ+ we

have Ỹ (γ) = 0, and the equilibrium condition of the uninformed is

γ
(πM + πM

2
− λ

)
+ (1− γ)

(πD + πD

2
− λ

)
− δ(T − t) ≥ γπM + (1− γ)πD,

which implies

γ
(πM − πM

2
− λ

)
> δ(T − t).
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Thus, the equilibrium condition of the informed is satisfied.

For case (iii), for any initial belief of the uninformed γ0, either T > Q(γ0), in which

case the proof is the same as the case of no deadlines in Section 3, or otherwise on the

equilibrium path there is a unique time t = Jλ(γ0) satisfying

T − Jλ(γ0) = Bλ(g(Jλ(γ0); γ0)).

By construction, the uninformed types are indifferent between conceding and persisting

for all t ∈ [0, Jλ(γ0)), so there is no profitable deviation before t = Jλ(γ0). Further, by

construction, the equilibrium payoff to the uninformed at t = Jλ(γ0) is

U(Jλ(γ0)) =g(Jλ(γ0); γ0)
(
Ỹ (γ0)πM + (1− Ỹ (γ0))

πM + πM

2
− λ

)

+ (1− g(Jλ(γ0); γ0))
(πD + πD

2
− λ

)
− δ(T − Jλ(γ0)).

Thus, by the argument for cases (i) and (ii) above, there is no profitable deviation for the

uninformed after t = J(γ0) either. For the informed, given the arguments for cases (i)

and (ii), it suffices to show that there is no profitable deviation before t = Jλ(γ0). The

equilibrium payoff function Vλ(γ) at any γ = g(t; γ0) for t < Jλ(γ0) is given by the solution

to the differential equation (6) with the boundary condition that Vλ(g(Jλ(γ0); γ0)) is

Ỹ (g(Jλ(γ0); γ0))πF +
(
1− Ỹ (g(Jλ(γ0); γ0))

)(πF + πF

2
− λ

)
− δ(T − Jλ(γ0)).

The claim that it is optimal for the informed to persist at all t < Jλ(γ0) follows from the

identical arguments in the proof of Proposition 2.

Proposition C2. Suppose that λ ∈ (0, (πM −πM )/2]. There exist thresholds γ
λ

and γλ,

with γ− < γ
λ

< γ+ < γλ < 1, such that the optimal deadline for any initial belief γ0 of

the uninformed is Sλ(γ0) if γ0 ∈ (γ
λ
, γλ), and is 0 otherwise.

Proof. We first verify that the welfare effects are positive in Regions A and B but negative

in Region C in Figure 2.

In Region B, the phase-transition time Jλ(γ0) is defined by the indifference condition

for the uninformed at the boundary Bλ:

δ(T − Jλ) = g(Jλ; γ0)Y (g(Jλ; γ0))
(πM − πM

2
− λ

)
.
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Taking derivative with respect to T , and using the definition of Y in equation (16), we

obtain:

∂Jλ

∂T
=

8λ(πM − πM )
8λ(πM − πM ) + (1− g(Jλ; γ0))(πD − πD + πM − πM )(πM − πM − 2λ)

.

Now, an explicit calculation of ∂Vλ(γ0)/∂T given in equation (17) yields:

δ

8λ(πM − πM )g(Jλ; γ0)

(
(πM − πM + 2λ)(πF − πF + 2λ)

+ (πD − πD + πM − πM )(πM − πM − 2λ)(γ+ − g(Jλ; γ0))
)∂Jλ

∂T
− δ.

Since ∂Jλ/∂T > 0, by Assumption 1 the above expression is greater than:

δ
(πM − πM + 2λ)2 + (πD − πD + πM − πM )(πM − πM − 2λ)(γ+ − g(Jλ; γ0))

g(Jλ; γ0)
(
8λ(πM − πM ) + (1− g(Jλ; γ0))(πD − πD + πM − πM )(πM − πM − 2λ)

) − δ,

which is equal to δ/g(Jλ; γ0)− δ > 0.

In Region A, the phase-transition time Jλ(γ0) is defined by the indifference condition:

δ(T − Jλ) =
g(Jλ; γ0)− γ∗

2(1− γ∗)
(πM − πM )− λ.

Take derivative respect to T to get

∂Jλ

∂T
=

2(1− γ∗)
1− 2γ∗ + g(Jλ; γ0))

.

Furthermore, by Assumption 1,

πF − V(Jλ) =
πF − πF

2
+ δ(T − Jλ) + λ >

πM − πM

2
1− 2γ∗ + g(Jλ; γ0)

1− γ∗
.

Finally, since x(Jλ) = δ∗/g(Jλ; γ0), we have

∂Vλ(γ0)
∂T

= −δ + x(Jλ)(πF − V(Jλ))
∂Jλ

∂T
> 0.

In Region C, the phase-transition time Jλ(γ0) is defined by:

δ(T − Jλ) = g(Jλ; γ0)
(πM − πM

2
− λ

)
.
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Take derivative respect to T to get

∂Jλ

∂T
=

2(1− γ∗)
2(1− γ∗)− (1− g(Jλ; γ0))(1− γ+)

.

Furthermore,

πF − V(Jλ) = δ(T − Jλ) =
g(Jλ; γ0)

2
1− γ+

1− γ∗
(πM − πM ).

Therefore,

∂Vλ(γ0)
∂T

= −δ + x(Jλ)(πF − V(Jλ))
∂Jλ

∂T
= −δ +

δ(1− γ+)
2(1− γ∗)− (1− g(Jλ; γ0))(1− γ+)

≤ 2δ(γ∗ − γ+)
2(1− γ∗)− (1− γ+)

< 0.

The remainder of the proof is to compare the value of ex ante welfare Wλ(γ0) at the

two local maxima of 0 and Sλ(γ0) for γ0 > γ−.

The equilibrium payoff functions for the informed and uninformed in the no-delay

game are given by

U0
λ(γ0) =





1
2γ0(πM + πM − 2λ) + (1− γ0)πD if γ0 ∈ [0, γ−),

γ0πM + (1− γ0)πD + 1
2γ0Y (γ0)(πM − πM − 2λ) if γ0 ∈ [γ−, γ+],

1
2γ0(πM + πM − 2λ) + 1

2 (1− γ0)(πD + πD − 2λ) if γ0 ∈ (γ+, 1);

and

V 0
λ (γ0) =





πF if γ0 ∈ [0, γ−),

Y (γ0)πF + 1
2 (1− Y (γ0))(πF + πF − 2λ) if γ0 ∈ [γ−, γ+],

1
2 (πF + πF )− λ if γ0 ∈ (γ+, 1).

Under the deadline T = Sλ(γ0), the payoff to the uninformed is simply US
λ (γ0) =

U(γ0) as in (3). To compute the payoff to the informed, we solve the differential equation

(6) with the boundary condition

Vλ(γ−) = πF − δBλ(γ−).

This gives the payoff to the informed when the deadline is T = Sλ(γ0):

V S
λ (γ0) = πF − 1− γ0

γ0

(
ln

( 1− γ0

1− γ−

)
+

γ0 − γ−
(1− γ0)(1− γ−)

)
(πM − πM )

− 1− γ0

γ0

γ2
−

1− γ−

(πM − πM

2
− λ

)
.
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The difference in ex ante welfare WS
λ (γ0)−W 0

λ(γ0) is

1
2− γ0

(US
λ (γ0)− U0

λ(γ0)) +
1− γ0

2− γ0
(V S

λ (γ0)− V 0
λ (γ0)) ≡ 1

2(2− γ0)
∆λ(γ0).

Since Y (γ−) = 1, we have

∆λ(γ−) = −γ−(πM − πM − 2λ)− γ−(1− γ−)(πM − πM − 2λ) < 0.

Since Y (γ+) = 0, we have

∆λ(γ+) = (1− γ+)(πF − πF − 2λ)− 2(1− γ+)2

γ+

γ2
−

1− γ−
(πM − πM − 2λ)

− 2(1− γ+)2

γ+

(
ln

(1− γ+

1− γ−

)
+

γ+ − γ−
(1− γ+)(1− γ−)

)
(πM − πM ).

Using Assumption 1, we can show that

∆λ(γ+) ≥ 1− γ+

πM − πM + 2λ

(
(1− γ−)(πM − πM − 2λ)2 + 8(1− γ+)λ(πM − πM )

)
> 0.

Thus, there exists a γ
λ
∈ (γ−, γ+) such that ∆λ(γ

λ
) = 0. Taking derivatives of ∆λ(γ0)

with respect to γ0 ∈ (γ−, γ+) and evaluating at γ
λ

using ∆λ(γ
λ
) = 0 yield

γ+(1− γ−)
γ

λ
(γ+ − γ−)

(πF − πF + 2λ) +
γ−(2γ

λ
− γ+(1 + γ

λ
))

γ
λ
(1− γ

λ
)(γ+ − γ−)

(πM − πM − 2λ)− 2(πM − πM )

>
1− γ−

γ+ − γ−
(πF − πF + 2λ) +

2γ− − γ+(1 + γ−)
(1− γ−)(γ+ − γ−)

(πM − πM − 2λ)− 2(πM − πM )

>
(1− γ−)γ+

γ+ − γ−
(πM − πM + 2λ) +

2γ− − γ+(1 + γ−)
(1− γ−)(γ+ − γ−)

(πM − πM − 2λ)− 2(πM − πM ),

where the first inequality follows because the first term in the expression is decreasing in

γ
λ

while the second term is increasing in γ
λ
, and the second inequality uses Assumption

1 and the assumption that λ ≤ 1
2 (πM − πM ). The above can be shown to be equal to

(πM − πM

2
−λ

)(
πD − πD

λ

(
πD − πD

πM − πM + 2λ
+

3
2

)
+

πM − πM − 2λ

πM − πM + 2λ
+

πM − πM

λ
− 2

)
,

which is positive because λ ≤ 1
2 (πM − πM ). As a result, γ

λ
is unique, with ∆λ(γ0) > 0 if

γ0 ∈ (γ
λ
, γ+), and the opposite holding if γ0 ∈ (γ−, γ

λ
).
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At the other end, we have

lim
γ0→1

∆λ(γ0) = −(πM − πM − 2λ) < 0.

Thus, there exists a γλ ∈ (γ+, 1) such that ∆λ(γλ) = 0. The derivative of ∆λ(γ0) with

respect to γ0 ∈ (γ+, 1) is given by

− (πF − πF + πD − πD + 2λ)− 3(πM − πM ) +
(1− (γ0)2)γ2

−
(γ0)2(1− γ−)

(πM − πM − 2λ)

+
2(1− (γ0)2)

(γ0)2

(
ln

( 1− γ0

1− γ−

)
+

γ0 − γ−
(1− γ0)(1− γ−)

)
(πM − πM ).

As in the case of λ = 0, the sum of the last two terms in the above expression is increasing

in γ0 and approaches 4(πM − πM ) as γ0 approaches 1. Thus,

∆′
λ(γ0) < −(πF − πF + πD − πD + 2λ) + (πM − πM ) < 0,

because λ ≤ 1
2 (πM−πM ). It follows that γλ is uniquely defined in (γ+, 1), and ∆λ(γ0) > 0

for γ0 ∈ (γ+, γλ) and the opposite holds for γ0 ∈ (γλ, 1).
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