Total Factor Productivity & Resource Misallocation
A Literature Review
by Jie Cao
Agenda

- The Big Picture – Economic Growth
 - The Facts to Be Explained
 - A Framework for Analysis
 - The Current Consensus

- Zoom In – TFP / Misallocation
 - Decompose TFP
 - Efficiency
 - Resource Misallocation

- My Tentative Research Topic
The Big Picture
The Facts to Be Explained

- Large differences in GDP per capita across countries
 - Klenow (2006)
 - $90^{th}/10^{th}$: 25.6 (2000 PPP per capita, 83 countries)
 - $75^{th}/25^{th}$: 8.8
 - S.D. of logs: 1.16
 - Data Source: Penn World Table (PWT6.1)

- Differences in rate of growth
A Framework for Analysis

- **GDP per capita**
 - Factor accumulation:
 - Physical capital
 - Human capital

- **Input factors & Productivity**
 - Productivity:
 - Measuring productivity
 - Productivity = Technology * Efficiency

- **Fundamentals / Social Infrastructure**
 - Government;
 - Culture;
 - Geography, Climate, and Natural Resources;
 - Inequality;
The Current Consensus

- Cross-country GDP per capital variation largely due
 - NOT to differences in input factors (physical and human capital)
 - BUT to the efficiency of factor use

- Important Papers
 - Mankiw, Romer and Weil (1992)
 - Klenow and Rodriguez-Clare (1997); Hall & Jones (1999); Prescott (1998)
 - Caselli (2005); Klenow (2006)
Klenow (2006)

- Production Function: \(Y = K^\alpha (AhL)^{1-\alpha} \)
 - \(Y \): PPP GDP; \(pop \): population; \(L \): hours worked; \(h \): human capital per worker; \(K \): PPP physical capital; \(A \): a residual - TFP

- Growth / Development Accounting

\[
\frac{Y}{pop} = \frac{L}{pop} \left(\frac{K}{Y} \right)^{\frac{\alpha}{1-\alpha}} \left(\frac{h}{Y} \right)^{\frac{1}{2}} \left(\frac{A}{Y} \right)^{\frac{1}{3-6}}
\]
Zoom In
Decompose TFP

- Why large differences in TFP across countries?

- Decompose TFP (Weil 2004 text book)
 - $TFP(A) = \text{Technology}(T) \times \text{Efficiency}(E)$
 - T: knowledge about combining factors to produce output
 - E: how effectively T and factors are used

- Technology (T) – Endogenous Growth Literature
Efficiency Matters

- Explaining cross-country income variation
 - Efficiency matters (E) more than technology (T)
 - One Table from Baily and Solow (2001)

Table: Productivity in Selected Industries in the Early 1990s (Baily and Solow, 2001)

<table>
<thead>
<tr>
<th>Industry</th>
<th>United States</th>
<th>Japan</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles</td>
<td>100</td>
<td>127</td>
<td>84</td>
</tr>
<tr>
<td>Steel</td>
<td>100</td>
<td>110</td>
<td>100</td>
</tr>
<tr>
<td>Food Processing</td>
<td>100</td>
<td>42</td>
<td>84</td>
</tr>
<tr>
<td>Telecommunications</td>
<td>100</td>
<td>51</td>
<td>42</td>
</tr>
<tr>
<td>Aggregate Productivity</td>
<td>100</td>
<td>67</td>
<td>89</td>
</tr>
</tbody>
</table>
Catalogue Efficiency (Hsieh & Klenow 2009)

- **Within-firm/sector inefficiency**
 - Barriers to technology adoption
 - Slow technology diffusion
 - Technology Differences
 - Parente and Prescott (1994, 1999, 2000); Howitt (2000);
 Klenow and Rodriguez-Clare (2005)

- **Cross-firm/sector inefficiency**
 - Resource misallocation across firms / sectors

- **Other inefficiency**
 - Unproductive activities; Idle Resources
What is Resource Misallocation (Weil 2004)

- Policy Distortion Lowers TFP
 - Bad policies -> distortions
 - Distortions -> inefficient allocation of resources across sectors/ firms
 - Inefficient resource allocation -> lower aggregate TFP
What Causes Misallocation - Examples

- Huge literature on specific policy distortions
 o Favorable loans to unproductive firms
 ▪ Peek and Rosengren (2005) on Japan banking system
 o Financial frictions such as borrowing constraint or cost
 ▪ Banerjee and Duflo (2005); Buera, Kaboski and Shin (2009); Moll (2010); Midrigan and Xu (2009);
 ▪ Hosono (2010)
 o Tax deals or subsidies to state-owned firms
 o Labor market regulation
 ▪ Hopenhayn and Rogerson (1993); Lagos, (2006)
 o Restriction on firm size
 ▪ Guner, Ventura, and Xu, (2008)
Restuccia and Rogerson (2008)

- Impact of policy distortions on aggregate TFP
 o Not a particular policy distortion
 o But a class of policies that generates idiosyncratic distortions

- Modeling Strategy
 o A growth model with heterogeneous firms (Hopenhayn 1992)
 o Relate policy distortions to taxes on output, capital or labor

- Policy distortions causes sizable decreases in aggregate TFP
 o Simulations based on model calibrated to U.S. data

- Provide a general empirical measure of distortions
Hsieh and Klenow (2009)

- Measure across-firm misallocation in manufacturing sector (China and India)
 o Monopolistic competition with heterogeneous firms
 ▪ a simpler version of Melitz (2003)
 o Distortions modeled as tax on output, capital and labor
 ▪ following Restuccia & Rogerson (2007)
- Find sizable misallocation relative to the U.S.
 o Removing distortions increases manufacturing TFP by
 ▪ 30%-50% in China
 ▪ 40%-60% in India.
My Tentative Research Topic (1)

- Apply a similar framework to data from China
- Examine the productivity of state-owned enterprises (SOEs) relative to non-SOEs
- Questions to be asked
 o Relative to non-SOEs, how productive are SOEs?
 ▪ Overall
 ▪ Within each 4-digit industrial sector
 o What’s the extent of resource misallocation?
 o Relative productivity of SOEs vs. share of SOEs in a sector?
 ▪ Does relative productivity increase as competition increases?
My Tentative Research Topic (2)

- What I know now
 - SOEs are much bigger on average than non-SOEs

- What I expect to see
 - SOEs are less productive than non-SOEs
 - Sizable resource misallocations between SOEs and Non-SOEs
 - SOEs productivity correlated with sector competition

- One further related question/puzzle
 - Why over invest SOEs and under invest non-SOEs
 - Liu and Zhu (2010) provide unsatisfactory answers