A new application of exact nonparametric methods to long-horizon predictability tests

Wei Liu
Department of Economics
University of Toronto

Alex Maynard*
Department of Economics
University of Toronto

October 25, 2005

Abstract

Empirical results from long-horizon regression tests have been influential in the finance literature. Yet, it has come to be understood that traditional long-horizon tests may be unreliable in finite samples when regressors are persistent and when the horizon is long relative to sample size. Recent research has provided valid alternative inference procedures in long-horizon regression in the case for which the regressor follows a near-unit root autoregressive process. However, in small samples, such processes may sometimes be difficult to distinguish with confidence from other persistent data generating processes, such as those displaying long-memory or structural breaks. In this paper, we demonstrate a simple means by which existing nonparametric sign and signed rank tests may be applied to provide exact inference in long-horizon predictive tests, without requiring any modeling assumptions on the regressor. Employing this robust approach, we find evidence of stock return predictability at moderate horizons using short-term interest rates, but little evidence of either short or long-run predictability using dividend-price ratios.

JEL Classification: C12, C22, G14

Keywords: sign test, signed rank test, long-horizon regression, predictive regression, structural breaks, long-memory

*Correspondence may be sent to A. Maynard (amaynard@chass.utoronto.ca) or W. Liu (leo.liu@utoronto.ca). We thank J.M. Dufour for valuable discussion and Eric Zivot and seminar participants at the University of Washington for useful comments. Maynard thanks the SSHRC for research funding.
1 Introduction

Predictability testing has many important applications in finance, including tests of stock return predictability (Fama and French, 1988; Campbell and Shiller, 1988; Campbell et al., 1997), the expectations hypothesis of the term structure (Lanne, 2000), and the forward rate unbiasedness hypothesis (Fama, 1984). A common feature of predictability regressions is the persistent or near-nonstationary behavior of the regressor. This leads to well known problems of size distortion in predictability testing (Mankiw and Shapiro, 1986), and has generated substantial interest in both econometrics and empirical finance (Cavanagh et al., 1995; Stambaugh, 1999; Campbell and Yogo, 2003; Jansson and Moreira, 2004, for example).

While many econometric solutions have been proposed to address this problem, the sign and signed rank tests of Campbell and Dufour (1995, 1997) have a number of unique and appealing aspects to them. First, they are the only tests we are aware of that provide correct size without any modelling assumptions whatsoever on the regressor. This provides for even greater generality than most competing procedures based on local-to-unity modelling assumptions. For example, it allows for both unmodelled structural breaks and long-memory, two alternatives that may in practice be difficult to distinguish from near-unit roots. Secondly, while common size corrections provide improved asymptotic approximations to finite sample behavior, the sign and signed rank tests provide for exact finite sample inference under weak conditions.

One practical limitation of finite sample sign and signed rank tests is that they require white noise assumptions on the dependent variable under the null hypothesis. This assumption is satisfied in simple one-period predictability tests, since the dependent variable is by assumption unpredictable under the null hypothesis. However, it rules out the direct application of these robust tests to long-horizon predictability regressions, which test for predictability in long-horizon returns cumulated over several periods. Yet, long-horizon regressions have been particularly influential in the empirical literature (Fama and French, 1988; Campbell and Shiller, 1988; Mark, 1995; Campbell et al., 1997), especially as they typically show much stronger evidence of stock return predictability. By suggesting a simple means of applying sign and signed rank tests in a long-horizon setting, we hope to widen the scope for empirical application of nonparametric predictive testing.\footnote{Campbell and Galbraith (1993) and Campbell and Dufour (1997) employ sign and signed rank statistics to test the expectation hypothesis of the term structure. In their case, they use 3 month horizons with monthly data, but split the data into three separate non-overlapping sub-samples, as in the sample-splitting technique.}
The reason that sign tests cannot be directly applied to long-horizon regressions is that the return horizon in these regressions (e.g. 4 years) typically exceeds the sampling frequency (e.g. 1 month). Thus, the returns on the left-hand side (LHS) overlap for multiple periods thereby violating the required white noise assumptions. In fact, when the horizon length is long relative to the sampling frequency this also causes additional problems for statistical inference in predictive regression. While HAC standard errors may be sufficient to correct inference at moderate horizons, the standard asymptotics start to break down at longer horizons (Richardson and Stock, 1989; Valkanov, 2003).

When the horizon length is moderate (or fixed) relative to the sample size, one elegant solution to this problem, suggested briefly in Campbell and Dufour (1995), would be to employ the sample splitting methods of Dufour and Torres (1998). In this approach the original sequence of overlapping k-period returns would be divided into k sub-samples of independent (or at least non-overlapping) k period returns. The sign/signed rank test could then be applied to each sub-sample, with bounds procedures used to pool the individual test results. Although not yet fully explored, this approach seems likely to work quite well for moderate or fixed horizon lengths. On the other hand, its suitability under the long-horizon assumptions of (Richardson and Stock, 1989; Valkanov, 2003) is somewhat less clear, since these assumptions would imply fixed sub-sample sizes.2

In this paper, we propose a simple alternative approach by which nonparametric sign and signed rank tests may be applied to provide exact inference under very weak assumptions in long-horizon predictive tests. Our empirical strategy is based on a rearrangement of the predictive regression considered earlier in the finance literature (Jegadeesh, 1991; Cochrane, 1991). Jegadeesh (1991) and Cochrane (1991) show that the regression of a long-horizon return on a single period predictor may be replaced by a regression of a one period return on a long-horizon regressor without fundamentally altering the interpretation of the test. The advantage of replacing a long-horizon LHS variable with a long-horizon right-hand side (RHS) variable is that we recover the white noise assumption on the LHS variable under the null hypothesis. On the other hand, this further adds to the persistence in the RHS variable and described in the paragraph below. Other sign test applications have used return horizons that match the sampling frequency. For example, Maynard (2005) employs sign tests to provide robust tests of forward rate unbiasedness and Wu and Zhang (1997) employ them to test the sign of the spot return/forward premium relationship.

2 Under long-horizon assumptions the number of horizons and thus the number of sub-samples required for sample-splitting techniques is a fixed fraction of sample size. See Section 3.3 for further discussion.
Hodrick (1992) finds that the regression based predictability tests using this rearrangement still show substantial size distortion.

We propose the application of long-horizon sign and signed rank tests based on this same rearrangement. In fact, the benefits of rearranging the long-horizon regression are substantially greater for the sign/signed rank tests than they are for the regression tests. This is because these tests are particularly sensitive to dependence in the LHS variable, but insensitive to the dependence in the RHS variable. Thus, while the sign/signed rank tests of Campbell and Dufour (1995, 1997) cannot be directly applied to the original form of the long-horizon regression, they provide exact finite sample inference using the rearranged version of this regression.

Before turning to the empirical study, we provide an extensive Monte Carlo comparison of the sign and signed rank test procedures to the sup-bound version of Valkanov (2003)’s long-horizon predictive test.3 Our interest focuses on the robustness of the procedures to alternative forms of persistence used to characterize the regressor, such as long-memory/fractional integration and various types of structural break processes, that may in practice be difficult to distinguish from the near-unit root autoregressive models upon which many predictive tests are commonly based. Although the performance of long-horizon tests has been well-studied in the local-to-unity case, we know of no prior evidence regarding their robustness under these alternative modelling specifications. Thus, in addition to providing a natural basis of comparison to the sign and signed rank tests, we believe these results may be of practical interest in themselves.

The traditional long-horizon tests using robust standard errors were found to severely over-reject in all of the data generating processes considered. The Valkanov (2003) sup-bound test, which is designed for autoregressive/near-unit root regressors, turned out to be fairly robust in more general specifications. While it modestly over-rejected in a few specific cases, it tended to be fairly conservative under less persistent parameterizations of the data generating process for the predictors. Overall, the sign and signed rank tests provided the most consistent accuracy.

3Another version of the Valkanov (2003) test imposes the assumptions of the Gordon Growth model to obtain a plug-in estimate of the local-to-unity parameter. Since, in general, the local-to-unity parameter cannot be consistently estimated using time series data, we did not include it in our robustness study. Rossi (2003) also provides novel inference procedures in long-horizon expectation tests. However, as she explains, these tests are better-suited for expectations hypothesis tests than for the non-predictability tests considered here. Many other important predictive test procedures have been developed for short-horizon tests with persistent regressors (Cavanagh et al., 1995; Jansson and Moreira, 2004, e.g.) in the short-horizon context, but Valkanov (2003) and Rossi (2003) provide the only explicit long-horizon test procedures that we are aware of.
in terms of size across the full set of models considered. This good performance results from
the specification-free properties and exact finite sample distributions of these nonparametric
tests. Although the sign and signed rank tests are nonparametric tests that do not fully
exploit all available information in the data, their power properties were still comparable in
many cases to the parametric sup-bound test. The ranking of the two approaches varied with
the specification of the model and the choice of model parameters.

We employ our new approach to provide exact inference in long-horizon stock return pre-
dictability tests employing both the one-month treasury bill and the dividend-price ratio as
predictors, with return horizons ranging from one-month to four years. Earlier influential work
(Fama and French, 1988; Campbell and Shiller, 1988; Campbell et al., 1997) found strong evi-
dence of stock return predictability using both series, particularly for the dividend-price ratio
in long-horizons. However, both predictors are highly persistent, and predetermined but not
exogenous, suggesting the possibility of size distortion even in short-horizons. Consequently,
a recent literature has been devoted to the application of appropriately sized stock return pre-
dictability tests at both short (Stambaugh, 1999; Lewellen, 2003; Wolf, 2000; Campbell and
Yogo, 2003, e.g.) and long (Valkanov, 2003; Rossi, 2003; Torous et al., 2005, e.g.) horizons.
Nonetheless, these studies still impose autoregressive or local-to-unity modelling assumptions
on the predictor, ruling out interesting possibilities such as structural breaks or long-memory
behavior. Ours is the first empirical study we know of to conduct valid long-horizon pre-
dictability tests without imposing any assumptions on the behavior of the regressors. Using
this robust approach, we confirm the existing evidence of return predictability using short to
medium horizon treasury bills, but find no significant evidence of predictability at either short
or long-horizons employing the dividend-price ratio as a predictor.

The rest of this paper is structured as follows. Section 2 introduces long-horizon pre-
dictability tests, explains their size distortion, and discusses the corrections currently available
in an autoregressive/near-unit root context. Section 3 presents and motivates the robust ap-
proach considered here. Simulations are provided in Section 4 and Section 5 employs our new
approach to provide robust tests for long-horizon predictability in stock returns. Section 6
concludes. Tables and figures are included at the end.
2 The traditional long-horizon framework

In what follows, \(y_t \) denotes a single period financial return, such as a stock or exchange rate return, and \(x_{t-1} \) is a predetermined predictor such as an interest rate or dividend-price ratio. Predictive tests are commonly implemented via either the coefficient restriction \(\beta = 0 \) in standard predictive regressions of the form

\[
y_{t+1} = \alpha + \beta x_t + \varepsilon_{1,t+1},\tag{1}
\]

or alternatively, as the restriction \(\beta(k) = 0 \) in long-horizon regressions of the form

\[
y_{t+k} = \alpha(k) + \beta(k)x_t + \varepsilon_{1,t+k}, \quad \text{where} \tag{2}
\]

\[
y_{t+k} = y_{t+1} + \ldots + y_{t+k} \quad \text{and} \tag{3}
\]

\[
\varepsilon_{1,t+k} = \varepsilon_{1,t} + \ldots + \varepsilon_{1,t+k} \tag{4}
\]

respectively define the \(k \)-period return and residual.

Since the hypothesis of interest restricts only the relation between \(y_t \) and \(x_{t-k} \) (i.e. \(\beta(k) = 0 \)), it is in principle unnecessary to model \(x_t \) so long as it behaves in a sufficiently stationary manner. In practice, however, the observed behavior of \(x_t \) is often quite persistent, in which case the model choice for \(x_t \) can affect the statistical behavior of \(\hat{\beta} \) (or \(\hat{\beta}(k) \)).

There are a number of possible modelling strategies that can be used to capture the persistence in \(x_t \). Most common is the autoregressive framework of the type given by

\[
(1 - \phi L) b(L) x_t = \mu + \varepsilon_{2,t}, \tag{5}
\]

where \(\phi \) represents the largest autoregressive root, \(L \) denotes the lag operator, and the largest root of the polynomial \(b(L) \) is strictly less than one. To complete this form of the model, the residuals may then be modelled as the white noise process,

\[
\varepsilon_t = \begin{pmatrix} \varepsilon_{1,t} \\ \varepsilon_{2,t} \end{pmatrix}' \sim WN(0, \Sigma) \tag{6}
\]

\[
\Sigma = \begin{pmatrix} \sigma_{11} & \delta \sigma_{12} \\ \delta \sigma_{12} & \sigma_{22} \end{pmatrix} \tag{7}
\]
with cross-correlation \(\delta \) unrestricted under the null hypothesis.

In this model, the parameter \(\phi \) plays the key role in determining the persistence of the process. For fixed \(\phi \), \(x_t \) is integrated of order zero (I(0)) for \(\phi < 1 \) and integrated of order one (I(1)) for \(\phi = 1 \). The large sample behavior of many estimators and test statistics is known to depend critically on this distinction. On the other hand, it is often difficult in practice to distinguish with confidence between these two alternatives, and large sample approximations based on either assumption may often be misleading when \(\phi \) is close, but not equal, to one. This near-unit root case is often better approximated by the local-to-unity model, in which the largest root is modelled as

\[
\phi = 1 + \frac{c}{T},
\]

where \(c = 0 \) corresponds to the unit root, small negative values of \(c \) correspond to near-unit roots, and \(c << 0 \) approximates a stationary process. Although seldom taken literally as a data generating process, large sample theory based on this model is often more accurate in small sample sizes, than those based on a fixed value of \(\phi \).

In order to clearly discuss the implications of this model below, the following definitions and standard results are also useful. Define \(\omega_{11}^2 = \sigma_{11}^2/b(1)^2 \), let \(W_1(r) \) and \(W_2(r) \) be two standard Weiner processes with correlation \(\delta \) and define the Ornstein-Uhlenbeck process

\[
J_{c,2}(r) = W_2(r) + c \int_0^r e^{c(r-s)} W_2(s) ds.
\]

Then, denoting by \([x] \) the largest integer \(\leq x \),

\[
\begin{pmatrix}
T^{-1/2} \sigma_{11}^{-1} \sum_{t=1}^{T_{Tr}} \varepsilon_{1t}, & T^{-1/2} \omega_{22}^{-1} \sum_{t=1}^{T_{Tr}} \varepsilon_{2t}, & T^{-1/2} \omega_{11}^{-1} x_{[Tr]}
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
W_1(r), & W_2(r), & J_{c,2}(r)
\end{pmatrix}.
\]

2.1 Two sources of size distortion

There are two well-documented sources of size distortion that may arise in long-horizon regression of the type specified in (2). The first source of size distortion arises from the fact that many of predictors, such as dividend and earning price ratios, interest rates, and forward premia, are highly persistent, but only predetermined, rather than fully exogenous. Since this problem is common to both the short and long-horizon regressions we will focus our discussion on (1). In the context of (8), (1) has the form of a cointegrating regression when \(c = 0 \) and describes cointegration between near I(1) variables for \(c < 0 \). As in the cointegrating regression, when \(\delta \neq 0 \), the regression coefficient \(\hat{\beta} \) remains consistent, but has a nonstandard limiting distribution. Likewise, standard test-statistics based on this parameter, do not have
their usual limiting distribution. For example, the limiting behavior of the t-statistic \(t_\beta \) is given by (Cavanagh et al., 1995)

\[
t_\beta \Rightarrow \delta \tau_c + (1 - \delta^2)^{1/2} Z,
\]

where \(Z \) is standard normal random variable, \(\tau_c = (\int J_{c,2}^2)^{-1/2} \int J_{c,2} dW_2 \), where, from here on in, for any continuous function \(f \), \(\overline{f}(r) \) is defined by \(f(r) = f(r) - \int_0^1 f(s) ds \). As is clear from (9), critical values based on the standard normal distribution are valid only for \(\delta = 0 \) and/or \(c << 0 \). Otherwise, the use of standard critical values is well known to generate size distortion, with rejection rates of up to nearly 30% in a 5% nominal test in a model with intercept and reaching above 50% in a model with trend (Cavanagh et al., 1995; Mankiw and Shapiro, 1986).

In the long-horizon context, these problems are further complicated by the fact that the error term in (1) is no-longer serially uncorrelated even under the null hypothesis, in which case it follows an MA(k-1), as seen from (4). If \(k \) is small relative to \(T \), the OLS estimator \(\hat{\beta}(k) \) will yield a consistent estimate of \(\beta(k) \). Hence assuming stationary \(x_t \) and fixed \(k \), the usual asymptotic theory with HAC standard errors (Hansen and Hodrick, 1980; Newey and West, 1987; Andrews, 1991, for example), still provides for appropriate statistical inference, at least in large sample. However, for the sample sizes encountered in practice, this fixed-\(k \) theory often provides a poor approximation to the sampling distribution (Richardson and Stock, 1989; Valkanov, 2003). As these authors show, a better asymptotic approximation is obtained by modelling the horizon length as a fixed proportion of sample size, i.e.

\[
k = \lambda T, \quad \text{for } 0 < \lambda < 1.
\]

(10)

Under these assumptions, the behavior of the regression coefficient \(\hat{\beta}(k) \) is quite different. Since \(k \) increases linearly in sample size, the residual \(\varepsilon_t^k \) behaves like an I(1) process, satisfying (Valkanov, 2003)

\[
T^{-1/2} \sigma^{-1}_{11} \varepsilon_{1,[Tr]+k} \Rightarrow T^{-1/2} \sigma^{-1}_{11} \sum_{s=[Tr]}^{[Tr]+[\lambda T]} \varepsilon_{1,s} \Rightarrow W_1 ((r + \lambda)) - W_1 (r) \equiv W_1 (s; \lambda) .
\]

(11)
Since, when $\beta = 0$, $y_t = \varepsilon_{1,t}$, y_{t+k} behaves identically under the null hypothesis. When x_t is also persistent, so that (8) applies, and the null $\beta(k) = 0$ holds, Valkanov (2003) shows that (2) exhibits the basic characteristics of a spurious regression (Granger and Newbold, 1974; Phillips, 1986), in which $y_{t+k} = \varepsilon_{t+k}$ is integrated, but not cointegrated with the near unit root regressor x_t. For instance, the limiting behavior of the t-statistic under the null is described by (Valkanov, 2003, Theorem 2)

$$T^{-1/2}t_{\beta} \Rightarrow F \left(W_1(r; \lambda), J_{2,2}(r) \right),$$

where

$$F(A(r), B(r)) \equiv \left[\int_0^{1-\lambda} A(r)^2 dr \int_0^{1-\lambda} B(r)^2 dr - \left(\int_0^{1-\lambda} A(r)B(r) dr \right)^2 \right]^{-1/2} \int_0^{1-\lambda} A(r)B(r) dr.$$

Thus it diverges at rate \sqrt{T}, giving rise to the same false significance observed in spurious regression. In other words, rejection rates under the null hypothesis approach one, for large T (and hence large k).

2.2 Corrections based on autoregressive/near unit root models

A large number of modified testing procedures have been proposed to correct inference in (1) in the context of the autoregressive specification of the type given by (5). The principle difficulty encountered in the local-to-unity model (8) is the dependence of the limit distribution in (9) on the local-to-unity parameter c, a parameter which cannot be consistently estimated in a time series context. Cavanagh et al. (1995) suggest a solution to this problem based on bounds procedures, in which the rejection region is chosen conservatively by choosing the largest (in absolute value) critical values across a range of possible values for c. The range for c may be based on a first stage confidence interval for c as in Stock (1991) (a Bonferroni Bound) or may simply include all plausible values of c (a sup bound). Cavanagh et al. (1995) also suggest a finite sample adjustment to reduce the conservative nature of the Bonferroni test, with which it performs quite well.

Recognizing that when y_t is stationary under the null hypothesis but has a near-unit root component under the alternative hypothesis, a second approach has been to reinterpret tests of $\beta = 0$ as stationarity tests on y_t (Wright, 2000; Lanne, 2002). Other solutions include finite sample size corrections (Stambaugh, 1999; Lewellen, 2003), augmented regression methods (Amihud and Hurvich, 2004), and resampling methods (Wolf, 2000, e.g.). Most recently, in
an important new development, Jansson and Moreira (2004) develop a test for $\beta = 0$ in (1) which has correct size and optimal power conditional on a set of sufficient statistics for ϕ.

While the above mentioned procedures have been developed primarily for the short-horizon regression (1), many of them of can be extended to longer-horizons under the assumption that the horizon length k is a fixed value independent of sample size. For example, by adjusting the standard errors, Torous et al. (2005) extend the bounds procedure of Cavanagh et al. (1995) to the long-horizon case. Likewise, Jansson and Moreira (2004) show how their procedure may be extended to allow for more general stationary error processes for ε_t, which, for fixed values of k, includes moving average errors of the type exhibited by ε_{t+k}^k. Such extensions, may be expected to work well when horizon length is moderate relative to sample size, but the results of Richardson and Stock (1989) and Valkanov (2003) suggest some caution regarding the use of fixed-k asymptotic approximations in longer-horizon regressions.

In contrast to the numerous econometric procedures designed to improve inference in short-horizon regression, we know of only a few methods explicitly designed for long-horizon regressions and remaining valid under general conditions, including those specified in (10). Valkanov (2003) proposes tests based on a rescaled t-statistic t/\sqrt{T} based on the distribution (12), where the dependence of (12) on c may be handled by sup bounds as in (Cavanagh et al., 1995).

Rossi (2003) shows that under certain standard assumptions the coefficient $\beta(k)$ in the long-horizon regression can be approximated by $\beta(k) \approx k\beta(1) \left(\frac{e^{\lambda}-1}{\lambda} \right)$ and uses this to provide a confidence interval on $\beta(k)$ based on a consistent estimate of $\beta(1)$ and a confidence interval for c.

3 Robust long-horizon tests

3.1 Alternative models for persistent regressors

Although, the local-to-unity model in (5) and (8) provides a very general model for x_t, allowing simultaneously stationary, unit root, and near-unit root regressors, it remains just one of several possible modelling strategies for capturing persistent behavior. Other commonly

employed specifications, such as the long memory/fractionally integrated model\(^5\)

\[
(1 - L)^d (x_t - \mu_2) = \varepsilon_{2,t}, \quad 0 < d < 1 \tag{13}
\]

where \(0 < d < 1\) and various models incorporating structural breaks, which may also induce the high persistence features displayed by the forecasting variables. Indeed, the possibilities available for modelling structural breaks are quite rich. They may be modelled as historical breaks in the parameters governing (5), as in

\[
(1 - \phi_j L) b_j (L) x_t = \mu_j + \varepsilon_{2,t}, \quad \text{for} \quad \tau_{j-1} \leq t \leq \tau_j \tag{14}
\]

where \(\tau_0 = 1\) and the \(\tau_j\) for \(j = 1, \ldots, J\) denote the break dates. Alternatively, the breaks can be endogenized as in the Markov switching models (Hamilton, 1989; Diebold and Inoue, 2001)

\[
(1 - \phi_{s_t} L) b_{s_t} (L) x_t = \mu_{s_t} + \varepsilon_{2,t}, \quad \text{where}
\]

\[
p_{t,ij} = P(s_t = j|s_{t-1} = i) \tag{15}
\]

for \(j = 1, \ldots, J\) denote the (possibly time-varying) transition probabilities between states. Likewise, in the stochastic permanent break (or STOP-BREAK) model (Engle and Smith, 1999; Diebold and Inoue, 2001)

\[
x_t = \mu_t + \varepsilon_{2t}, \quad \mu_t = \mu_{t-1} + q_{t-1} \varepsilon_{t-1} \tag{17}
\]

the random coefficient \(q_{t-1}\) depends on the size of last period’s shock, \(\varepsilon_{t-1}\), as in

\[
q_{t-1} = \frac{\varepsilon_{2t-1}^2}{\gamma_T + \varepsilon_{2t-1}^2} \tag{18}
\]

so that small shocks are primarily temporary, whereas large shocks are permanent and act like breaks.

There is plenty of empirical evidence to suggest that these models may be taken seriously as possible alternatives to the simpler autoregressive framework in (5). For instance, evidence of

\(^5\)The fractionally integrated (I(d)) process, for \(0 < d < 1\), in which shocks decay hyperbolically provides an intermediate case between the I(1) process, in which shocks are fully persistence and I(0) process, in which shocks decay exponentially. It has stationary long-memory for \(d < 0.5\) and is nonstationary for \(d > 0.5\). See Baillie (1996) for an excellent survey on long-memory modelling in econometrics.
long-memory has been reported in several financial series. Baillie and Bollerslev (1994) found the monthly forward premium for monthly data to be well described by an ARFIMA(2,d,0) model; Shea (1991) uncovered long memory in interest rate spreads and some interest rates in levels; Backus and Zin (1993) documented long memory evidence in short rate returns. Likewise Perron (1989, 1997) documented evidence of structural breaks in many economic time series. In the financial literature, Timmermann (2001) uncovered structural breaks in the US dividend processes, Atkins and Rakoz (2005) showed that real interest rates in Canada and the U.S. can be well represented by a stochastic break model, Choi and Zivot (2002) and Sakoulis and Zivot (1999) find structural breaks in the forward premium, and Zhou (2005) provided evidence of regime switching in foreign exchange rate data.

Economic or financial theory often offers few a priori guidelines regarding the underlying model for x_t. Moreover, predictive tests concern only the relation between y_{t+1} and x_t and not the behavior of x_t itself. Thus, even in cases where theory does suggest a priori restrictions on the behavior of x_t, the imposition of these restrictions implicitly transforms the predictive test into a test of joint null hypothesis involving both the non-predictability of y_t and the model’s implications for x_t.

While it is generally possible to distinguish empirically between these various models in large sample, it may not always possible to do so with confidence in smaller samples. Theoretical results (Faust 1996 and 1999) suggest certain limits on our ability to infer low frequency behavior in finite sample. Likewise, as the number of breaks (J) grows larger, data generated from models such as (14) increasingly resemble unit root processes, which may be interpreted as processes with a break in every period (Engle and Smith, 1999, e.g.). The more recent literature has also emphasized the near observational equivalence of long-memory/fractionally integrated models and certain structural break processes. Diebold and Inoue (2001) demonstrated that, with an appropriate choice of break probability, both the Markov switching model (15) and the stochastic permanent break model in (17) display long-memory behavior. A number of other studies have demonstrated similar difficulty in distinguishing between long-memory and structural break models (Granger and Hyung, 2004; Gourieroux and Jasiak, 2001; Smith, 2002; Hwang, 2000, for example). Distinguishing $I(1)$ or near-$I(1)$ pro-

6Choi and Zivot (2002), found evidence of both long-memory and structural breaks in the forward premium.

7Numerous other empirical studies report evidence on structural breaks in financial time series (Bliss and Smith, 1998; Clemente et al., 2003; Repach and Wohar, 2003; Kocenda, 2005, for example).
cesses from fractionally integrated processes is in principle more straightforward. However, practical difficulties may be encountered here as well. For instance, traditional unit root and stationarity tests often have poor power against long memory alternatives (Diebold and Rudebusch, 1991; Hassler and Wolters, 1994; Lee and Schmidt, 1996) and semi-parametric estimators of the long-memory parameter d, such as the GPH (Geweke and Porter-Hudak, 1983), may be subject to serious bias in finite sample, particularly when the autoregressive persistence is strong (Agiakloglou et al., 1991).

These distinctions can matter for both short and long-horizon tests since the distribution given in (9) and (12) upon which many such tests are based depend on the autoregressive/local-to-unity modelling assumptions. If x_t is fractionally integrated, than (1) is fractionally cointegrated and alternative asymptotics are well-known to apply. Lee (2005) provides asymptotics for long-horizon regression when x_t is fractionally integrated. Inference in long-horizon regression when the regressor obeys the various structural break models discussed above has not to our knowledge been studied. In the sub-sections below, we suggest a simple mechanism by which existing sign and signed rank tests may be used to provide long-horizon predictability tests that remain valid irrespective of the underlying data generating process. We first provide a brief description of existing sign and signed rank tests procedures and then describe how they may be employed in a long-horizon context.

3.2 Finite sample sign and signed rank tests

Campbell and Dufour (1995, 1997) propose nonparametric sign and signed rank predictability tests that allow for exact inference without assumption on x_t thus avoiding the size problems in (1) that plague standard regression tests. Following their notation, we define the time t-information set $I_t = \sigma(y_t, x_t, y_{t-1}, x_{t-1}, \ldots)$ and let g_t denote any I_t measurable conditioning variable (i.e. g_t is a function of y_{t-j} and x_{t-j} for $j \geq 0$). Further, we assume a constant unconditional median for y_t, which we denote by b_0. Then, using g_t as the conditioning variable, and slightly generalizing the notation of Campbell and Dufour (1995, 1997) to allow for truncations at the beginning and end of sample, infeasible versions of the sign (S_T) and
signed rank \((SR_T)\) statistics are respectively defined by

\[
S_T(y_{t+1}, g_t, r, s) = \sum_{t=1+r}^{T-s} u((y_{t+1} - b_0)g_t), \quad \text{and} \quad (19)
\]

\[
SR_T(y_{t+1}, g_t, r, s) = \sum_{t=1+r}^{T-s} u((y_{t+1} - b_0)g_t) R_{t+1}^+(b_0), \quad (20)
\]

where \(u(z)\) is a sign indicator function equal to one if \(z \geq 0\) and zero otherwise, \(R_{t+1}^+(b_0) = \sum_{j=1+\tau}^{T-s} u(|y_{t+1} - b_0| - |y_j - b_0|)\) denotes the rank and \(r\) and \(s\) denote the number of data points truncated at the beginning and end of sample respectively. In the short horizon context \(S_T(y_{t+1}, g_t, 0, 1)\) and \(SR_T(y_{t+1}, g_t, 0, 1)\) are typically employed.

Campbell and Dufour (1995, 1997) show both statistics to have exact finite sample null distributions under weak assumptions. For the sign test they impose only a constant median \((b_0)\) on \(y_t\) and the independence of \(y_{t+1}\) with respect to \(I_t\) under the null hypothesis. Following the results of (Coudin and Dufour, 2003, Proposition 3.2), the latter assumption, which implies \(\beta = 0\) in (1), can be further weakened to require only the following mediangale difference sequence assumption\(^8\)

\[
P(y_{t+1} - b_0 > 0|I_t) = P(y_{t+1} - b_0 < 0|I_t) = 0.5 \quad (21)
\]

which as noted by Coudin and Dufour (2003), allows for conditional heteroskedasticity of a general nature. Under these relatively weak assumptions \(S_T\) was shown to have an exact binomial distribution with \(\tilde{T} = T - r - s\) trials and probability of success 0.5. The signed rank test \((SR_T)\) requires the slightly stronger condition that \(y_t\) is continuously distributed and symmetric about \(b_0\). Then, under the null distribution that \(y_t\) is independent of \(g_t\) it also has an exact finite sample distribution given by Wilcoxon signed-rank variate of size \(\tilde{T}\), \(W_{\tilde{T}} = \sum_{t=1}^{\tilde{T}} tB_t\), where \(B_t\) are independent Bernoulli random variables with \(P[B_t = 0] = P[B_t = 1] = 0.5, t = 1, ..., \tilde{T}\).

In practical applications the median \(b_0\) is generally unknown. Campbell and Dufour (1997) combine an exact first-stage confidence interval on \(b_0\), together with a Bonferroni bound to provide feasible two-stage versions of sign test and signed rank test whose rejection rates

\(^8\)Simply redefine \(u_t\) in (Coudin and Dufour, 2003) as \(u_t = (y_t - b_0)g_{t-1}\), omit the conditioning on \(X\), and note that \(u_t\) inherits the mediangale difference sequence property of \(y_t\) since \(g_t \epsilon I_t\).
never exceed the nominal level. They also consider a simpler plug-in approach, in which \(b_0 \) is replaced by the sample median of \(y_{t+1} \). This approach is no longer exact in finite sample, but relies only on the consistency of the sample median for its asymptotic validity. Thus it may be expected to have reliable size in practice, as found by Campbell and Dufour (1997) and expanded upon in our simulations below. Furthermore the power is improved by centering \(g_t \) about a sequence of estimated medians. So long as these sample medians are estimated using only the sub-sample \(g_1, \ldots, g_t \) from data available at time \(t \) and are thus predetermined, the finite sample size properties are unaffected.

3.3 Application to short and long-horizon predictability tests

The application of the sign and signed rank tests to the short-horizon predictability testing problem is straightforward. One simply defines \(g_t \) as the value of \(x_t \) centered about its median, as described above. The mediangale or independence assumption of \(y_{t+1} \) with respect to \(I_t \) differ somewhat from the martingale difference sequence assumption typically imposed on \(\varepsilon_{t+1} \) in the short-horizon regression (1). Nevertheless they conform with the basic notion that the location of \(y_{t+1} \) should be unpredictable under the null hypothesis. In particular, if \(x_t \) has no predictive content for \(y_{t+1} - b_0 \), it should also have no predictive content for either its sign or signed rank.

In this case, the sign statistic simply counts the number of times that \(x_t \) (e.g., the dividend-price ratio) predicts \(y_{t+1} - b_0 \) (e.g., the centered stock return) with the correct sign. Under the null hypothesis this should happen with probability 0.5, yielding a roughly equal number of correct and incorrectly signed predictions. On the other hand, if \(x_t \) has positive (resp. negative) predictive content for \(y_{t+1} \), as implied by \(\beta > 0 \) (\(\beta < 0 \) resp.), then there should be a significant majority of correct (incorrect) sign predictions. The signed rank tests operates in a similar fashion, except that rather than weighting all observations equally, it attaches more weight to larger returns.

Both the sign and signed rank tests, which are not based on the parametric regression procedure, have some very attractive features in the context of the predictive testing. In particular, they do not require any model specification for the forecasting variable \(x_t \). In other words, they are valid under all possible specifications for \(x_t \), including not only the standard autoregressive, unit root, and local-to-unity specifications typically considered in the predictive
regression literature, but also the long-memory (13) and various structural break processes (14, 15, & 17) discussed in Section 3.1. Therefore they are unaffected by the persistence and residual cross-correlation that distort the finite sample distributions of standard regression based statistics. Moreover, since the sign and signed rank tests have exact size in finite sample, they do not rely on large sample approximation. Other advantages of the sign test in financial applications include robustness to both outliers and conditional heteroskedasticity of a very general nature.

Such features would be equally, if not more, desirable in the long-horizon predictive context, in which the size distortion inherent in standard regression tests is considerably worse. Unfortunately, application of these exact tests to long-horizon predictive tests is somewhat less straightforward and we are aware of no existing empirical long-horizon applications to date.

One of the few assumptions required for the exact finite sample tests described above is that the dependent variable, y_{t+1} must be either a mediangale difference sequence with respect to I_t (the sign test) or it must be fully independent of I_t (the signed rank test). These assumptions are reasonably imposed on the one-period returns y_{t+1} employed in the short-horizon regression (1), which are unpredictable under the null hypothesis that $\beta = 0$. However, this is no longer the case when working with the multi-period returns y_{t+k} typically employed in the long-horizon regression. When $\beta(k) = 0$ in (2) the long-horizon dependent variable is given by $y_{t+k} = \alpha(k) + \epsilon_{1,t+k}^k$, where $\epsilon_{1,t+k}^k = \epsilon_{1,t} + \ldots + \epsilon_{1,t+k}$ follows a moving average process of order $k - 1$ even if $\epsilon_{1,t}$ is serially uncorrelated. This clearly violates the required mediangale difference sequence and independence assumptions for $k > 1$ and thus the sign and signed rank tests cannot be directly applied to test $\beta(k) = 0$ in (2).

One solution to this problem suggested briefly in Campbell and Dufour (1995) is to employ the type of sample splitting procedures discussed in Dufour and Torres (1998). Briefly stated, in this approach the MA$(k - 1)$ structure of the multi-period returns is used to divide the original dependent return series into k sub-samples of the form $\left\{y_{j+(s+1)k}^k \right\}_{s:1\leq j+(s+1)k\leq T}$ for $j = 1, \ldots, k$. The approximately T/k returns within each subsample are then mutually independent, allowing for the separate application of the sign/signed rank test to each subsample. The overall test would then reject at level α if any one of the k tests rejected at level α/k. This procedure, suggested in a regression context by Dufour and Torres (1998) constitutes a valid conservative inference procedure.
This is a clever approach that should be expected to work well for fixed and/or moderate horizon returns. On the other hand, it is not clear how well the test would work under the long-horizon assumptions in (10), in which each subsample size is fixed at approximately 1/λ. When the sub-sample size is too small it may be difficult to pick appropriate critical values for a discrete distributions, such as the binomial, especially for a test of size α/k. This makes practical implementation difficult. Likewise, the power implications of fixed (or very small) sub-sample sizes for the test procedure are uncertain.

We suggest an even simpler approach by which the Campbell and Dufour (1995, 1997) sign and signed rank tests may be employed to provide exact long-horizon predictive tests based on a rearrangement of (2) employed previously in the finance literature for regression tests. This rearrangement, which was only partially successful in a regression context, works quite well conjunction with sign and signed rank tests.

To be concrete, instead of employing the sign and signed rank methods to test (2) directly, we instead follow the approach of Jegadeesh (1991) and Cochrane (1991) who base their test of β(k) = 0 on a simple rearrangement of (2) under the null hypothesis, that avoids the serial correlation in the residuals. Define a long-horizon version of the regressor x_t as

\[x_t^k = x_{t-k+1} + x_{t-k+2} + \ldots + x_t. \]

(22)

Since \(\beta(k) = \text{cov}(y_{t+k}, x_t)/\text{var}(x_t) \), the long-horizon non-predictability restriction \(\beta(k) = 0 \) is equivalent to the orthogonality condition \(\text{cov}(y_{t+k}, x_t) = 0 \). However, provided that \((y_t, x_t)\) is jointly covariance stationary

\[\text{cov}(y_{t+k}, x_t) = \text{cov}(y_{t+1}, x_t^k), \]

(23)

where the latter covariance is the numerator of the slope coefficient \(\gamma(k) \) in the regression of \(y_{t+1} \) on \(x_t^k \):

\[y_{t+1} = \gamma_0(k) + \gamma(k)x_t^k + \epsilon_{t+1}. \]

(24)

Thus, the restriction \(\beta(k) = 0 \) in (2) is equivalent to the restriction that \(\gamma(k) = 0 \) in (24) and Jegadeesh (1991) and Cochrane (1991) therefore suggest testing \(\beta(k) = 0 \) via the restriction \(\gamma(k) = 0 \) in (24).

Since \(\gamma(k) \neq 0 \) under the alternative (\(\gamma(k) \neq 0 \)) the two tests may yield different power.
Yet, in a careful simulation study, Hodrick (1992) reports that the power differences between
the two testing procedures are minor, with the specification in (24) often offering a slight
improvement.

The principle advantage of this specification is that the new residual v_{t+1} no longer follows
an $MA(k-1)$ process, leaving the dependent variable y_{t+1} serially uncorrelated under the
null hypothesis. Nevertheless, in a regression context, this rearrangement cannot fully solve
the long-horizon inference problem. The simplification of the residual and dependent variable
comes at the cost of increasing the persistence in the regressor. In fact, when k is large relative
to sample size, as in (10), then x_t^k is a partial sum process, behaving like an $I(1)$ process even
for x_t i.i.d. More realistically, if x_t itself has a near-unit root as in (8) than for large k the
behavior of x_t^k may resemble a near-$I(2)$ process. Perhaps for these reasons, Hodrick (1992)
still reports substantial size distortion in tests based on (24).

However, this same rearrangement turns out to be much more advantageous in the case of
the sign and signed rank tests. The reasoning is as follows. The regression test is potentially
distorted by both the persistence in the residuals, as generated by a long-horizon dependent
variable in (2), and persistence in the regressor, as generated (or reinforced) by the long-horizon
regressor in (24). By contrast, while the sign test is invalidated by the serially correlated
residuals in (2), it retains the correct finite sample size, no matter how persistent the regressor
x_t^k in (2). Thus there is far more to gain by replacing the long-horizon dependent variable y_t^{k+k}
by the long-horizon regressor x_t^k.

Our testing strategy may by this point have become apparent. Rather than basing our sign
and signed rank tests on the statistics $S_T(y_t^{k+k},x_t^*,0,k)$ and $SR_T(y_t^{k+k},x_t^*,0,k)$ and employing
the same dependent variable and predictor as in (2), we follow the approach in (24) and base
our test instead on

$$S_T^k \equiv S_T(y_{t+1},x_t^{k*},k-1,1)$$
$$SR_T^k \equiv SR_T(y_{t+1},x_t^{k*},k-1,1)$$

where $x_t^{k*} = x_t^k - med_1t(x_t)$ is the value of x_t centered about the sample median of $x_1, \ldots x_t$.
Centering of this type is known to improve test power (Campbell and Dufour, 1997), but does
not affect test size since $med_1t(x_t)$ is predetermined.

While $S_T(y_t^{k+k},x_t^*,0,k)$ and $SR_T(y_t^{k+k},x_t^*,0,k)$ have unknown and potentially compli-
cated distributions due to the dependence in y^k_{t+k}, S^k_T and SR^k_T satisfy the conditions of Campbell and Dufour (1995), and thus their distributions are exactly described by the binomial distribution and Wilcoxon signed-rank variates respectively. Thus using definitions of the sign and signed rank test we may directly apply the methods of Campbell and Dufour (1997) to provide correct size in finite sample. For ease of reference we state this formally in the remark below.

Remark 1

(i) Let $(y_t - b_0, x_t)$ satisfy the assumptions of Campbell and Dufour (1995, Proposition 1). Then $S^k_T \sim Bi(\tilde{T}, 0.5)$, where $Bi(n, p)$ denotes the binomial distribution, and \(\tilde{T} = T - k \).

(ii) Let $(y_t - b_0, x_t)$ satisfy the assumptions of Campbell and Dufour (1995, Proposition 2). Then $SR^k_T \sim W_{\tilde{T}} = \sum_{t=1}^{\tilde{T}} tB_t$, for $B_t \sim i.i.d. Bi(1, 0.5)$, where $W_{\tilde{T}}$ denotes a Wilcoxon signed-rank variate of size \tilde{T}.

Upon noting that $g_t = x_t^k$ remains I_t measurable, the remark follows as an immediate application Campbell and Dufour (1995, Propositions 1 & 2). This thus provides a novel practical application of the sign and signed rank tests, which, to our knowledge, has not been suggested in the previous literature. Moreover, it yields a long-horizon test whose robustness properties are unmatched by existing procedures.

4 Simulation Study

In this section we compare the simulation performance (both size and power) of several long-horizon predictive tests across a number of data generating processes that could potentially be employed to model the persistent behavior commonly observed in predictive regressors. In addition to standard regression tests, we consider the sup version of Valkanov’s re-scaled bounds test (V_{sup}) and the long-horizon implementations of the sign (S^k_T) and signed rank tests (SR^k_T) tests suggested in Section 3.3 above.

4.1 Simulation models

Because a variety of specifications may induce similar looking persistent behavior, we consider several different models for x_t in assessing the performance of the long-horizon tests described below. The DGPs used in this paper are the AR(1) model (5), the long-memory/I(d) model (13), the historical break model (14), the modified STOP-BREAK model (17) and the Markov
switching model (15). Table 1 summarizes the model specifications (columns 1-2) and parameter values (column 3) used to simulate \(x_t \). Diebold and Inoue (2001) show that under certain parameterizations, the modified STOP-BREAK model and Markov switching model generates data that resembles a long-memory series. The degree of apparent fractional integration (\(d \)) in the break series is in both cases controlled by single parameter, which, to make the comparison explicit, they also denote by \(d \). To facilitate interpretation, we adopt the same parameterization and notation in our simulations. Although, \(d \) refers to different parameters in each model, it represents a similar degree of persistence in the sense of Diebold and Inoue (2001).

As in Valkanov (2003) and Rossi (2003), the short-horizon returns \(y_t \) are generated from (1), with \(\alpha = 0 \) and the long-horizon returns \(y^k_t \) are defined as in (3). The innovations are drawn from the joint normal distribution as

\[
(\varepsilon_{1,t}, \varepsilon_{2,t})' \sim \text{i.i.d.} \mathcal{N}(0, \Sigma), \quad \Sigma = \begin{pmatrix} 1 & \delta \\ \delta & 1 \end{pmatrix}
\]

in which \(\delta \) measures the residual cross-correlation. In all cases, our simulation analysis is conducted with sample size 200 and 2000 replications.

4.2 Implementation of long-horizon tests

Our primary interest focuses on the long-horizon sign and signed rank tests \(S^k_T \) and \(SR^k_T \) defined in (25) and (26) respectively. Since \(b_0 \) is unknown, these tests are not immediately implementable. As discussed in Section 3.2, one may either employ the Campbell and Dufour (1997) Bonferroni bound to maintain exact inference or use the sample median \(\text{med}^T (y_t) \) as a plug-in estimator of \(b_0 \). Although the Bonferroni approach is more appealing from a theoretical perspective, simulations in the short-horizon autoregressive case suggest that this approach can be fairly conservative in practice, whereas the plug-in approach, while not exact in finite sample, appears to yield good size (Campbell and Dufour, 1997, Tables 2-4). We therefore employ the plug-in version of the tests in the simulations discussed below.\(^9\)

\(^9\)Since Markov switching model implies \(I(0) \) process, the modified version tends to generate stationary \(I(d) \) like processes. However, pure stationary process itself is not interesting in this exercise. To generate high persistent Markov switching series we incorporate a AR(1) process into the simple Markov switching model. Indeed, this Markov switching-AR(1) process can be treated as stochastic historical break model.

\(^{10}\)We employ a normal approximation to the exact critical values. With \(T=200 \), the normal approximation and the exact distribution yield very similar critical values. This is not a large sample approximation but rather
We compare these tests to the long-horizon testing method introduced by Valkanov (2003). This test is based on the rescaled t-statistic $T^{-1/2}t_\beta$, which under the local-to-unity model (5.8), has the limiting distribution in (12). Critical values for this distribution are obtained by simulation following the same steps as described in Valkanov (2003). However, these depend on three nuisance parameters: λ, δ, and c. The first two have natural plug-in estimators, but the third cannot be consistently estimated. Valkanov (2003) suggests a sup-bound test in which the re-scaled test-statistic is compared to a grid of critical values across a pre-specified range for c. We adopt the same range, $c \in [-10,0]$, as Valkanov (2003). The overall test rejects only if a rejection is obtained for all c in this range. We refer to this method as V^{sup}.

The only other valid inference procedure we know of in the long horizon model (10) is the one suggested by Rossi (2003). She proposes a simple transformation of the long horizon regression coefficient, based on which a confidence interval for $\beta(k)$ can be obtained by combining a consistent estimate of $\beta(1)$ and a confidence interval for c. However, according to the author, this approach is more appropriately applied to test non-zero values of $\beta(k)$. Indeed, Rossi (2003) showed that it works quite well for tests of $\beta(k) = 1$ but has low power when testing $\beta(k) = 0$. Therefore, it is not included in our simulations.

To put the results in the proper perspective, we also make some comparisons to the standard long-horizon t-test in (2) employing Newey-West standard errors (t^{NW}_β) and to the standard t-test (t_γ) in the reorganized long-horizon regression in (24).

4.3 Size analysis

In this section we report size comparisons for the long-horizon tests discussed above using a sample size of $T = 200$ and a horizon length of $k = 24$. Tables 2 and 3 present rejection rates under the null hypothesis ($\beta(k) = 0$) using a five percent nominal size for each of the models and parameters values listed in Table 1. In both tables, the value of the residual cross-correlation parameter δ, which controls the degree of endogeneity, is varied across the rows (see column 2), while the relevant persistence parameter is varied across the columns. For the autoregressive, historical break and Markov switching processes given in Table 2 the persistence of x_t is varied via the autoregressive parameter ϕ, while for the long-memory and

11 They are based on 5000 replications using simulation sample sizes of 1000 observations.
12 A similar sup-bound approach was suggested in Cavanagh et al. (1995) for the short-horizon case.
STOP-BREAK models of Table 3, we vary the long-memory parameter d.

As reported elsewhere, the standard long-horizon test with robust standard errors (t_{NW}) shown in the top panel of both tables suffers from substantial over-rejection. This reflects size distortion due to both the long-horizon returns and the persistence of the regressor, which is predetermined, but not exogenous. The problem can be quite severe, with rejection rates in the long-memory and STOP-BREAK models reaching above sixty-percent (see Table 3, panel 1).

The t_{γ} statistic based on the specification in (24), shown in the second panel, eliminates the size distortion due to long-horizon returns. In both tables, we notice a substantial drop in rejection rates when we switch from t_{NW} (panel 1) to t_{γ} (panel 2). However, it does not eliminate the size-distortion due to the persistence in x_t and still over-rejects when this persistence is strong. Moreover, the MA(k) structure in x_t^k can aggravate the size problem. For example, for $k = 24$ the rejection rates can exceed twice the nominal size for stationary long-memory ($d = 0.4$, column 3, panel 2, in Table 3), whereas, in results not shown, size distortion is not present for $d = 0.4$ and $k = 1$. By contrast, the long-horizon sign (S_T, third panel) and signed rank (SR_T, fourth panel) tests, which are also based on the specification in (24), perform quite well in all of the models under consideration. The tests are slightly conservative in a number of cases, but never over-reject.\footnote{Due to the plug-in parameters for the median the test is not exact. The rejection rates are even more accurate using the true median b_0. However, this case is omitted, since it is not practically relevant.}

Finally, the bottom panel of both tables show the rejection rates for the Valkanov (2003) V_{sup} test. Unlike the standard regression tests discussed above, this test has the correct asymptotic distribution in the presence of both local-to-unity persistence and long-horizon returns. On the other hand, its behavior under structural break and long-memory models has not been previously studied. Thus, in addition to providing a basis of comparison, the simulation results on V_{sup} may provide potentially useful information. Not surprisingly, the V_{sup} does not over-reject under the local-to-unity model considered in columns 3-5 of Table 2. This test, which is explicitly based on local-to-unity asymptotics, also shows considerable robustness to the alternate models for x_t shown in the remainder of Table 2 and 3. This is a very encouraging finding. Nevertheless, the size of the long-horizon sign and signed rank tests are generally more accurate. The V_{sup} tends to modestly over-reject in the presence of a structural break (see Table 2, panel 5, column 7), with rejection rates up to ten percent.
For the other processes, it more often has a tendency to under-reject, particularly when \(x_t \) is less persistent. In a few cases, the test can become extremely conservative, for example, when \(x_t \) follows a Markov-Switching process as shown in Table 2, Columns 9-11. This is primarily due to the conservative nature of the bounds procedure. However, because the local-to-unity parameter cannot be consistently estimated in general, it is not possible to replace this by a consistent plug-in parameter as in the case of the sign and signed rank tests.

4.4 Power Comparison

Assigning non-zero values to \(\beta \), we evaluate the power of each testing approach and their comparisons are presented in Figures 1-5. These figures show power functions for a right sided alternative \((\beta > 0)\) under the autoregressive, long-memory, historical break, STOP-BREAK, and Markov Switching models respectively. We fix \(\delta \) at 0.9 and allow \(\beta \) to vary. For each DGP, we consider a highly persistent (panel A) and a moderately persistent series (panel B). In each figure, three power functions are plotted. The two lines with circles and triangles represent the power functions of the sign test and signed rank tests respectively. The line with the solid diamonds corresponds to the power function of \(V_{sup} \). The two regression tests, \(t_{\beta}^{NW} \) and \(t_{\gamma} \), are omitted on account of their poor size performance. We again set \(k = 24 \).\(^{14}\)

No uniformly most powerful test has been proposed in the context of long-horizon regression.\(^{15}\) The \(V_{sup} \) test may suffer power loss due to the conservative nature of the bounds procedure, whereas the nonparametric sign and signed rank tests do not use the full information in the data set. In practice, neither test clearly dominates. The \(V_{sup} \) test tends to yield better power in more persistent cases, as evidenced by panel A of the figures. However, the order is reversed for slightly more moderate persistence levels, with the nonparametric tests often showing better power in panel B of the figures. For example in Figure 1, with an autoregressive parameter of \(\phi = 0.99 \), the \(V_{sup} \) test has better power, while in panel B for \(\phi = 0.95 \) the power curves cross. The power comparison also varies with the specification of \(x_t \). For example, the relative power of the \(V_{sup} \) test is particularly high in both the deterministic historical break (Figure 3) and STOP-BREAK (Figure 4) models, while the nonparametric tests do relatively well in the Markov switching case (Figure 5).

\(^{14}\)Additional results for \(k = 1, 3 \) and 12 are available upon request.

\(^{15}\)The Jansson and Moreira (2004) test is conditionally uniformly most powerful in short-horizon predictive regression but has yet to be adapted to long-horizon regression assumptions, in which the horizon length grows with sample size.
5 Robust long horizon stock return predictability tests

A large volume of research has been devoted to the stock return predictability problem in the last two decades, but without yielding a clear cut conclusion. While the formidable forecasting powers of stock return predictors such as the dividend-price and earnings price ratio were documented using standard asymptotic approaches in the original research on this topic (Fama and French, 1988; Campbell and Shiller, 1988; Campbell et al., 1997, e.g.), the evidence of predictability disappeared in some recent studies using relatively more reliable statistical inference procedures (Torous et al., 2005; Valkanov, 2003, e.g.).\(^{16}\) In this section, we revisit this issue and apply the correctly sized sign and signed rank tests to the stock return predictability problem. We first describe the data and then present the test results.

5.1 Data

We employ real stock returns as the dependent variable \(y_t\) using monthly log returns of the CRSP value-weighted (VW) market portfolio, corrected for inflation using the CPI. We consider two commonly employed persistent predictors \(x_t\), the (log) dividend-price ratio and the one month treasury bill rate. Following common practice (Campbell et al., 1997, Chapter 7) the dividend-price ratio is defined as the sum of the dividends over the past twelve months divided by the current price.\(^{17}\) The short-term rate is given by the annualized one month treasury bill rate, also obtained from the CRSP dataset. In addition, following Campbell et al. (1997), we also consider the stochastically detrended short-term interest rate as an alternative forecasting variable.\(^{18}\) The full sample period runs from January 1927 to December 2003. Following common practice, we also break this into two sub-periods, January 1927-December 1951 and January 1952-December 2003.

5.2 Persistence and endogeneity

In addition to the horizon length \(k\), the extent of the size distortion in standard long-horizon predictive tests is known to depend on both the degree of the persistence and the strength of

\(^{16}\)However, see (Lewellen, 2003) for an alternate conclusion.

\(^{17}\)Denoting the dividend and stock price by \(D_t\) and \(P_t\) respectively, the log-dividend-price ratio is defined as \(\log\left(\frac{\sum_{j=0}^{12} D_{t-j}}{P_t}\right)\).

\(^{18}\)Denoting the one-month treasury bill as \(i_t\), the stochastically detrended treasury bill is defined as \(i_t - \frac{1}{12} \sum_{j=0}^{11} i_{t-j}\).
the endogeneity or residual cross-correlation. In the autoregressive near-unit root model (5 - 8) these are determined respectively by the size of the parameters \(\phi \) (or \(c \)) and \(\delta \). Even if we are not sure that this is the correct model for \(x_t \) these parameters may still provide a rough indication of the potential for size distortion. Table 4 shows the estimated value of \(\delta \) (columns 2 & 7), the Augmented Dickey-Fuller (ADF) t-statistic (columns 3 & 8) and the Stock (1991) 95% confidence interval for the largest autoregressive root (\(\phi \)) based on an inversion of the ADF test (columns 4-5 & 9-10). The lag-length (\(q \)) shown in columns 6 and 11 is chosen by the Ng and Perron (2001) MIC criteria. Both the dividend-price ratio (columns 2-6) and the treasury bill (columns 7-11) are found to be highly persistent with confidence intervals on the largest root including one in every case. The estimated endogeneity parameter \(\hat{\delta} \) is also large and negative for the dividend-price ratio. This may not be surprising since the calculation of both the stock returns and dividend-price ratios depends on the stock price. However, in conjunction with the strong persistence in \(x_t \), it suggests serious size distortion even in short-horizon regression tests. By contrast, the treasury bill rate shows relatively modest residual correlation and tests using this predictor may not be subject to as strong size distortion, at least in short-horizons. Time series plots of the dividend-price ratio and treasury-bill are presented in Figure 6.

5.3 Test results

The test outcomes using the dividend-price ratio, one-month treasury bill rate and the stochastically detrended treasury bill rate as predictors are presented in Tables 5, 6 and 7 respectively. The top panel of each table shows the full sample results (1927-2003), while the next two panels show the results for two split samples, (1927-1951 and 1952-2003). The data is sampled monthly and we employ returns horizons of \(k = 1, 3, 12, 24, 36, \) and 48 months, as listed in the top row of each table. The tables show the results from all five tests employed in the simulations above. For purposes of comparison, we show p-values for both the standard long-horizon test \(t_{NW}^{\gamma} \) and the t-statistic \(t_{\gamma} \) in (24), despite their potential for size distortion. We also include p-values for the long-horizon sign \((S_{T}^{k}) \) and signed rank \((SR_{T}^{k}) \) tests. Finally, for the \(V_{sup} \) test we report the test result for a five percent two-sided test, denoting a rejection by R and a failure to reject by F. The implied sign of the estimated predictive relation is denoted

\[\text{We use the one-period return in calculating } \delta. \]
by the $+/-$ in the superscript to the right of each p-value and test outcome.

Results using the dividend-price ratio are shown in Table 5. The standard regression test t_{NW}^{NW} (top row of each panel) with robust standard errors shows strong evidence of predictibility, particularly at long-horizons. The t-statistic t_γ (second row) from the rearranged regression shows somewhat more modest evidence of predictibility. However, both tests likely suffer substantial size distortion, especially in light of the large values of δ and ϕ shown in Table 4. As seen in Section 4 this distortion can be particularly severe at the longer horizons for which the evidence of predictibility appears strongest. By contrast, the robust sign and signed rank tests, whose p-values are shown in the next two rows, do not suffer from size distortion. Nor, do they show any evidence of return predictibility using the dividend-price ratio. Moreover, the V_{sup} test, which essentially corrects the critical values for t_{NW}^{NW}, also fails to reject at the five percent level in all cases.

We next turn to the predictability tests employing the treasury bill as predictor in Tables 6 and 7. The results depend somewhat on whether the interest rate is specified in levels (Table 6) or is stochastically detrended (Table 7). Using the level, none of the five tests shows evidence of predictibility during the full sample. However, some of the robust tests, particularly the signed rank test, show evidence of predictibility in the later subsample (bottom panel). This evidence seems particularly strong at the shorter horizons. These tests also offer marginal evidence of predictibility (but of the opposite sign) at short-horizons in the 1927-1951 period. It is interesting to note that the evidence of predictibility in Table 6 is considerably stronger using the signed rank test than employing the traditional regression tests.

Using the stochastically detrended treasury bill rate in Table 7, both the robust tests (particularly the signed rank test) and the traditional regression tests show evidence of return predictibility at short-horizons in both the full and later subsamples, but not the earlier subsample. The stochastic detrending procedure reduces the persistence in the treasury bill, suggesting that the standard tests may in this case be more reliable when the horizon length is small. Thus perhaps it is not surprising that the tests are more closely in agreement.

These results must be interpreted carefully. Even before turning to the robust tests, the evidence of return predictibility using the dividend-price ratio is called into question by the high levels of persistence and endogeneity shown in Table 4, which suggest severe size distortion, especially in conjunction with the use of long-horizon returns. The insignificance p-values
from the robust tests further call these results into question. Nevertheless, the fact that none of the three reliable tests considered here show evidence of predictability, does not in itself prove that predictability is not present.

The traditional regression evidence of predictability using interest rates is not as striking as it is using the dividend-price ratio. Nonetheless, this evidence appears much more robust. In fact, the robust tests, particularly the signed rank test, often showed stronger evidence of predictability than the original regression tests. This clearly confirms the existing evidence in favor of return predictability using short-term treasury bills.

6 Conclusion

This paper has suggested a simple way to provide robust finite sample inference for long-horizon predictive tests that brings together the sign and signed rank tests of Campbell and Dufour (1995, 1997) with a rearrangement of the predictive regression considered earlier in the finance literature (Jegadeesh, 1991; Cochrane, 1991). While both steps are straightforward given the existing literature, it is only by combining the two that we arrive at a simple robust approach to long-horizon predictive testing. The standard sign and signed rank tests are not valid in a long-horizon context without the rearrangement, since long-horizons induce residual serial correlation. On the other hand, the rearrangement, which removes serial correlation in the residual at the expense of more persistent regressors, does not succeed in curing the size distortion often found in traditional predictive regression tests. It works much better when applied to the sign and signed rank tests, which are distorted by residual correlation, but insensitive to persistent regressors.

Our simulation results suggest that the test compares well to other existing long-horizon tests. Applying these tests to the long-horizon stock return predictability problem in finance, we confirm the robustness of the short-term interest rate as a stock return predictor, but find little evidence of predictability using the dividend-price ratio.

References

Smith, A. (2002). Why regime switching creates the illusion of long memory. mimeo, University of California, Davis.

The table entries show rejection rates under the null hypothesis for a nominal 5% test, where x_t is generated respectively by the AR(1), historical break and Markov switching processes as described in Table 1 and y_t is given by (1), with $\beta = 0$ where k denotes the horizon. The test procedures are described in Section 4.

Table 1: Summary of Simulation DGPs and parameters used for x_t

<table>
<thead>
<tr>
<th>Model</th>
<th>DGP</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR(1)</td>
<td>$x_t = \phi x_{t-1} + \varepsilon_{2,t}$</td>
<td>$\phi = {0.9, 0.95, 0.99}$</td>
</tr>
<tr>
<td>$I(d)$</td>
<td>$x_t = \sum_{j=0}^{\infty} \psi_j \varepsilon_{2,t-j}$</td>
<td>$d = {0.4, 0.7, 0.9}$</td>
</tr>
<tr>
<td>Historical</td>
<td>$x_t = \phi x_{t-1} + \varepsilon_{2,t}$</td>
<td>$\phi = {0.5, 0.9, 0.99}$</td>
</tr>
<tr>
<td>Break</td>
<td>$x_t = \mu + \phi x_{t-1} + \varepsilon_{2,t}$</td>
<td>$\mu = 7$</td>
</tr>
<tr>
<td>STOP-</td>
<td>$x_t = \mu + \varepsilon_{2,t}$</td>
<td>$\gamma_T = T^{1-a}$</td>
</tr>
<tr>
<td>Break</td>
<td>$x_t = \mu_{t-1} + \frac{\varepsilon_{2,t}}{\gamma_T}$</td>
<td>$d = {0.4, 0.7, 0.9}$</td>
</tr>
<tr>
<td>Markov</td>
<td>$x_t = \mu I(s_t = 1) + \nu_t$</td>
<td>$\mu = 7$</td>
</tr>
<tr>
<td>switching</td>
<td>$\nu_t = \phi \nu_{t-1} + \varepsilon_{2,t}$</td>
<td>$\phi = {0.5, 0.9, 0.99}$</td>
</tr>
<tr>
<td></td>
<td>$P(s_t = i</td>
<td>s_{t-1} = i) = 1 - 0.999 T^{-2\theta}$</td>
</tr>
</tbody>
</table>

Columns 1 and 2 provide the model types and precise specifications for simulations. Column 3 lists the parameter values used in size comparisons. The residual process is specified by $(\varepsilon_{1,t}, \varepsilon_{2,t})' \sim N(0, \Sigma)$, $\Sigma = \begin{pmatrix} \phi & \theta \\ \theta & \phi \end{pmatrix}$. Since the finite sample behavior of the modified STOP-BREAK model and the modified Markov switching model will correspond the $I(d)$ processes, we also provide the corresponding values for the order of fractional integration, d. I is the indicator function.

Table 2: Size comparisons for AR(1), Historical Break and Markov-Switching models.

<table>
<thead>
<tr>
<th>Tests</th>
<th>δ/ϕ</th>
<th>AR(1)</th>
<th>Historical Break</th>
<th>Markov Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>0.95</td>
<td>0.99</td>
</tr>
<tr>
<td>t_β</td>
<td>-0.3</td>
<td>0.2435</td>
<td>0.2705</td>
<td>0.3070</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.3280</td>
<td>0.3565</td>
<td>0.5390</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.3085</td>
<td>0.3645</td>
<td>0.5160</td>
</tr>
<tr>
<td>t_γ</td>
<td>-0.3</td>
<td>0.0575</td>
<td>0.0625</td>
<td>0.0580</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.0725</td>
<td>0.0695</td>
<td>0.1600</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.0705</td>
<td>0.0775</td>
<td>0.1400</td>
</tr>
<tr>
<td>S_T^k</td>
<td>-0.3</td>
<td>0.0385</td>
<td>0.0425</td>
<td>0.0350</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.0420</td>
<td>0.0335</td>
<td>0.0345</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.0415</td>
<td>0.0490</td>
<td>0.0445</td>
</tr>
<tr>
<td>SR_T^k</td>
<td>-0.3</td>
<td>0.0405</td>
<td>0.0375</td>
<td>0.0320</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.0450</td>
<td>0.0375</td>
<td>0.0415</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.0505</td>
<td>0.0490</td>
<td>0.0500</td>
</tr>
<tr>
<td>V_{sup}</td>
<td>-0.3</td>
<td>0.0075</td>
<td>0.0235</td>
<td>0.0535</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.0285</td>
<td>0.0245</td>
<td>0.0205</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.0250</td>
<td>0.0230</td>
<td>0.0200</td>
</tr>
</tbody>
</table>
Table 3: Size comparisons for Long-Memory and STOP-BREAK Models

<table>
<thead>
<tr>
<th>Tests</th>
<th>δ/d</th>
<th>Long-Memory</th>
<th>STOP-BREAK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
</tr>
<tr>
<td>t^NW_β</td>
<td>-0.3</td>
<td>0.2060</td>
<td>0.3055</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.3850</td>
<td>0.5280</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.3950</td>
<td>0.5255</td>
</tr>
<tr>
<td>t_γ</td>
<td>-0.3</td>
<td>0.0635</td>
<td>0.0620</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.1090</td>
<td>0.1625</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.1095</td>
<td>0.1590</td>
</tr>
<tr>
<td>S_t^β</td>
<td>-0.3</td>
<td>0.0400</td>
<td>0.0210</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.0370</td>
<td>0.0285</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.0460</td>
<td>0.0455</td>
</tr>
<tr>
<td>SR_t^β</td>
<td>-0.3</td>
<td>0.0395</td>
<td>0.0265</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.0450</td>
<td>0.0325</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.0460</td>
<td>0.0475</td>
</tr>
<tr>
<td>V_{sup}</td>
<td>-0.3</td>
<td>0.0000</td>
<td>0.0145</td>
</tr>
<tr>
<td></td>
<td>-0.9</td>
<td>0.0005</td>
<td>0.0060</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>0.0045</td>
<td>0.0055</td>
</tr>
</tbody>
</table>

The table entries show rejection rates under the null hypothesis for a nominal 5% test, where \(x_t \) is generated by the long-memory/fractionally integrated and STOP-BREAK processes respectively as described in Table 1 and \(y_t \) is given by (2), with \(\beta(k) = 0 \) where \(k \) denotes the horizon. The test procedures are described in Section 4.

Table 4: Confidence intervals on the largest root

<table>
<thead>
<tr>
<th>Sample</th>
<th>Dividend price ratio</th>
<th>One-month treasury bill rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ</td>
<td>t_{ADF}</td>
</tr>
<tr>
<td>1927-2003</td>
<td>-0.9312</td>
<td>-1.9701</td>
</tr>
<tr>
<td>1927-1951</td>
<td>-0.9262</td>
<td>-2.5815</td>
</tr>
<tr>
<td>1952-2003</td>
<td>-0.8858</td>
<td>-1.3969</td>
</tr>
</tbody>
</table>

Column 2 and 7 shows the estimate of the residual correlation parameter \(δ \) in (7). Column 3 and 8 shows Augmented Dickey-Fuller test statistic and Columns 4 and 9 and 5 and 10 respectively show the lower (\(\phi \)) and upper (\(\bar{\phi} \)) bounds for the (Stock, 1991) ninety-five percent confidence interval on the value of the largest root (\(\psi \)) in (5). The number of lags (\(q \)) is chosen using the (Ng and Perron, 2001) MIC criteria.
Table 5: Tests of stock return predictability using the log dividend-price ratio

<table>
<thead>
<tr>
<th>Sample Test</th>
<th>1.0</th>
<th>3.0</th>
<th>12.0</th>
<th>24.0</th>
<th>36.0</th>
<th>48.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1927 (t^W_\beta)</td>
<td>0.1753(^+)</td>
<td>0.1651(^+)</td>
<td>0.0519(^+)</td>
<td>0.0232(^+)</td>
<td>0.0209(^+)</td>
<td>0.0356(^+)</td>
</tr>
<tr>
<td>to (t_r)</td>
<td>0.1753(^+)</td>
<td>0.1246(^+)</td>
<td>0.0956(^+)</td>
<td>0.1015(^+)</td>
<td>0.1123(^+)</td>
<td>0.1164(^+)</td>
</tr>
<tr>
<td>2003 (S^T_R)</td>
<td>0.8953(-)</td>
<td>0.8434(-)</td>
<td>0.7658(-)</td>
<td>0.8156(-)</td>
<td>0.7628(-)</td>
<td>0.7612(+)</td>
</tr>
<tr>
<td>(SR^T_{\hat{\gamma}})</td>
<td>0.6210(\hat{\gamma})</td>
<td>0.5282(\hat{\gamma})</td>
<td>0.5792(\hat{\gamma})</td>
<td>0.5023(\hat{\gamma})</td>
<td>0.3951(\hat{\gamma})</td>
<td>0.1323(\hat{\gamma})</td>
</tr>
<tr>
<td>(\gamma \sup V)</td>
<td>(F^+)</td>
<td>(F^+)</td>
<td>(F^+)</td>
<td>(F^+)</td>
<td>(F^+)</td>
<td>(F^+)</td>
</tr>
</tbody>
</table>

The table entries provide two-sided p-values for the standard long-horizon regression \(t^W_\beta\), the regression test based on (24) \(t_r\), and the long-horizon sign \(S^T_R\) and signed rank \(SR^T_{\hat{\gamma}}\) tests. R (rejection) and F (fail to reject) denote the result for a 5% two-sided test using Valkanov (2003)’s \(V\) test. The implied sign of the estimated predictive relation is denoted by the +/- next to each entry. The column headings give the horizon length (k) measured in months. Here \(y_t\) denotes the log real stock return and \(x_t\) is the annually adjusted log dividend-price ratio.

Table 6: Tests of stock return predictability using the one month treasury bill rate

<table>
<thead>
<tr>
<th>Sample Test</th>
<th>1.0</th>
<th>3.0</th>
<th>12.0</th>
<th>24.0</th>
<th>36.0</th>
<th>48.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1927 (t^W_\beta)</td>
<td>0.4031(\hat{\gamma})</td>
<td>0.3511(\hat{\gamma})</td>
<td>0.6793(\hat{\gamma})</td>
<td>0.8573(\hat{\gamma})</td>
<td>0.7370(\hat{\gamma})</td>
<td>0.8407(\hat{\gamma})</td>
</tr>
<tr>
<td>to (t_r)</td>
<td>0.4031(\hat{\gamma})</td>
<td>0.3953(\hat{\gamma})</td>
<td>0.6693(\hat{\gamma})</td>
<td>0.9002(\hat{\gamma})</td>
<td>0.8284(\hat{\gamma})</td>
<td>0.8521(\hat{\gamma})</td>
</tr>
<tr>
<td>2003 (S^T_R)</td>
<td>0.4298(\hat{\gamma})</td>
<td>0.2628(\hat{\gamma})</td>
<td>0.2748(\hat{\gamma})</td>
<td>0.8156(\hat{\gamma})</td>
<td>0.9732(\hat{\gamma})</td>
<td>0.7612(\hat{\gamma})</td>
</tr>
<tr>
<td>(SR^T_{\hat{\gamma}})</td>
<td>0.9349(\hat{\gamma})</td>
<td>0.9052(\hat{\gamma})</td>
<td>0.8212(\hat{\gamma})</td>
<td>0.5554(\hat{\gamma})</td>
<td>0.4440(\hat{\gamma})</td>
<td>0.2439(\hat{\gamma})</td>
</tr>
<tr>
<td>(\gamma \sup V)</td>
<td>(F^\gamma)</td>
<td>(F^\gamma)</td>
<td>(F^\gamma)</td>
<td>(F^\gamma)</td>
<td>(F^\gamma)</td>
<td>(F^\gamma)</td>
</tr>
</tbody>
</table>

The table entries provide two-sided p-values for the standard long-horizon regression \(t^W_\beta\), the regression test based on (24) \(t_r\), and the long-horizon sign \(S^T_R\) and signed rank \(SR^T_{\hat{\gamma}}\) tests. R (rejection) and F (fail to reject) denote the result for a 5% two-sided test using Valkanov (2003)’s \(V\) test. The implied sign of the estimated predictive relation is denoted by the +/- next to each entry. The column headings give the horizon length (k) measured in months. Here \(y_t\) denotes the log real stock return and \(x_t\) is the one-month treasury bill rate.
Table 7: Tests of stock return predictability using the stochastically detrended Tbill rate

<table>
<thead>
<tr>
<th>Sample</th>
<th>Test</th>
<th>1.0</th>
<th>3.0</th>
<th>12.0</th>
<th>24.0</th>
<th>36.0</th>
<th>48.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>1927</td>
<td>(t_3)</td>
<td>0.1699</td>
<td>0.0311</td>
<td>0.1224</td>
<td>0.8578</td>
<td>0.2616</td>
<td>0.5696</td>
</tr>
<tr>
<td>to</td>
<td>(t_3)</td>
<td>0.1699</td>
<td>0.0480</td>
<td>0.0593</td>
<td>0.8079</td>
<td>0.5733</td>
<td>0.6428</td>
</tr>
<tr>
<td>2003</td>
<td>(S^k_F)</td>
<td>0.1671</td>
<td>0.0996</td>
<td>0.6670</td>
<td>0.1938</td>
<td>0.7122</td>
<td>0.8131</td>
</tr>
<tr>
<td></td>
<td>(SR^k_F)</td>
<td>0.0697</td>
<td>0.0079</td>
<td>0.0293</td>
<td>0.7314</td>
<td>0.4373</td>
<td>0.6641</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>V_{sup} F</td>
<td>F^- R^- F^- F^- F^- F^- F^-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1927</td>
<td>(t_3)</td>
<td>0.6129</td>
<td>0.8769</td>
<td>0.5616</td>
<td>0.2595</td>
<td>0.5840</td>
<td>0.6129</td>
</tr>
<tr>
<td>to</td>
<td>(t_3)</td>
<td>0.6129</td>
<td>0.8194</td>
<td>0.3402</td>
<td>0.1054</td>
<td>0.9594</td>
<td>0.9985</td>
</tr>
<tr>
<td>1951</td>
<td>(S^k_F)</td>
<td>0.4884</td>
<td>0.9078</td>
<td>0.3173</td>
<td>0.1331</td>
<td>0.4992</td>
<td>0.6599</td>
</tr>
<tr>
<td></td>
<td>(SR^k_F)</td>
<td>0.2807</td>
<td>0.8743</td>
<td>0.9677</td>
<td>0.2015</td>
<td>0.5980</td>
<td>0.8391</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>V_{sup} F</td>
<td>F^- F^- F^- F^- F^- F^- F^-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1952</td>
<td>(t_3)</td>
<td>0.0330</td>
<td>0.0041</td>
<td>0.0191</td>
<td>0.2161</td>
<td>0.1843</td>
<td>0.4323</td>
</tr>
<tr>
<td>to</td>
<td>(t_3)</td>
<td>0.0330</td>
<td>0.0060</td>
<td>0.0029</td>
<td>0.2595</td>
<td>0.4641</td>
<td>0.5385</td>
</tr>
<tr>
<td>2003</td>
<td>(S^k_F)</td>
<td>0.1495</td>
<td>0.0371</td>
<td>0.2415</td>
<td>0.7752</td>
<td>0.4836</td>
<td>0.7707</td>
</tr>
<tr>
<td></td>
<td>(SR^k_F)</td>
<td>0.1865</td>
<td>0.0017</td>
<td>0.0041</td>
<td>0.5561</td>
<td>0.7015</td>
<td>0.7753</td>
</tr>
<tr>
<td></td>
<td>(</td>
<td>V_{sup} F</td>
<td>R^- R^- F^- F^- F^- F^- F^-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The table entries provide two-sided p-values for the standard long-horizon regression \((t_3)\), the regression test based on \((24)\) \((t_3)\) and the long-horizon sign \((S^k_F)\) and signed rank \((SR^k_F)\) tests. R (rejection) and F (fail to reject) denote the result for a 5% two-sided test using Valkanov (2003)’s \(V_{sup}\) method. The implied sign of the estimated predictive relation is denoted by the +/- next to each entry. The column headings give the horizon length \((k)\) measured in months. Here \(y_t\) denotes the log real stock return and \(x_t\) is the stochastically detrended one-month treasury bill rate (see footnote 18).
Figure 1: The power functions when x_t follows an autoregressive process with $k = 24$ and $\delta = 0.9$ (panel A: $\phi = 0.99$, panel B: $\phi = 0.95$).

Figure 2: The power functions when x_t follows a fractionally integrated process with $k = 24$ and $\delta = 0.9$ (panel A: $d=0.9$, panel B: $d=0.4$).
Figure 3: The power functions when x_t follows a historical break process with $k = 24$, $\delta = 0.9$ and $\phi = 0.9$ (panel A: $\mu = 7$, panel B: $\mu = 3$).

Figure 4: The power functions when x_t follows a STOP-BREAK process with $k = 24$, $\delta = 0.9$ (panel A: $d=0.9$, panel B: $d=0.4$).
Figure 5: The power functions when x_t follows a Markov switching process with $k = 24, \delta = 0.9, \phi = 0.9$ and $p_{00} = p_{11} = 1 - 0.999T^{-0.6}$ (panel A: $\mu = 7$, panel B: $\mu = 3$).

Figure 6: Time series plots of the predictors (panel A: Log dividend-price ratio, panel B: One-month Treasury Bill rate).